| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbgoldbo.p |  |-  P = ( { 1 } u. Prime ) | 
						
							| 2 |  | nfra1 |  |-  F/ n A. n e. Even ( 4 < n -> n e. GoldbachEven ) | 
						
							| 3 |  | 3z |  |-  3 e. ZZ | 
						
							| 4 |  | 6nn |  |-  6 e. NN | 
						
							| 5 | 4 | nnzi |  |-  6 e. ZZ | 
						
							| 6 |  | 3re |  |-  3 e. RR | 
						
							| 7 |  | 6re |  |-  6 e. RR | 
						
							| 8 |  | 3lt6 |  |-  3 < 6 | 
						
							| 9 | 6 7 8 | ltleii |  |-  3 <_ 6 | 
						
							| 10 |  | eluz2 |  |-  ( 6 e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ 6 e. ZZ /\ 3 <_ 6 ) ) | 
						
							| 11 | 3 5 9 10 | mpbir3an |  |-  6 e. ( ZZ>= ` 3 ) | 
						
							| 12 |  | uzsplit |  |-  ( 6 e. ( ZZ>= ` 3 ) -> ( ZZ>= ` 3 ) = ( ( 3 ... ( 6 - 1 ) ) u. ( ZZ>= ` 6 ) ) ) | 
						
							| 13 | 12 | eleq2d |  |-  ( 6 e. ( ZZ>= ` 3 ) -> ( n e. ( ZZ>= ` 3 ) <-> n e. ( ( 3 ... ( 6 - 1 ) ) u. ( ZZ>= ` 6 ) ) ) ) | 
						
							| 14 | 11 13 | ax-mp |  |-  ( n e. ( ZZ>= ` 3 ) <-> n e. ( ( 3 ... ( 6 - 1 ) ) u. ( ZZ>= ` 6 ) ) ) | 
						
							| 15 |  | elun |  |-  ( n e. ( ( 3 ... ( 6 - 1 ) ) u. ( ZZ>= ` 6 ) ) <-> ( n e. ( 3 ... ( 6 - 1 ) ) \/ n e. ( ZZ>= ` 6 ) ) ) | 
						
							| 16 |  | 6m1e5 |  |-  ( 6 - 1 ) = 5 | 
						
							| 17 | 16 | oveq2i |  |-  ( 3 ... ( 6 - 1 ) ) = ( 3 ... 5 ) | 
						
							| 18 |  | 5nn |  |-  5 e. NN | 
						
							| 19 | 18 | nnzi |  |-  5 e. ZZ | 
						
							| 20 |  | 5re |  |-  5 e. RR | 
						
							| 21 |  | 3lt5 |  |-  3 < 5 | 
						
							| 22 | 6 20 21 | ltleii |  |-  3 <_ 5 | 
						
							| 23 |  | eluz2 |  |-  ( 5 e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ 5 e. ZZ /\ 3 <_ 5 ) ) | 
						
							| 24 | 3 19 22 23 | mpbir3an |  |-  5 e. ( ZZ>= ` 3 ) | 
						
							| 25 |  | fzopredsuc |  |-  ( 5 e. ( ZZ>= ` 3 ) -> ( 3 ... 5 ) = ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) ) | 
						
							| 26 | 24 25 | ax-mp |  |-  ( 3 ... 5 ) = ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) | 
						
							| 27 | 17 26 | eqtri |  |-  ( 3 ... ( 6 - 1 ) ) = ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) | 
						
							| 28 | 27 | eleq2i |  |-  ( n e. ( 3 ... ( 6 - 1 ) ) <-> n e. ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) ) | 
						
							| 29 |  | elun |  |-  ( n e. ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) <-> ( n e. ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) \/ n e. { 5 } ) ) | 
						
							| 30 |  | elun |  |-  ( n e. ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) <-> ( n e. { 3 } \/ n e. ( ( 3 + 1 ) ..^ 5 ) ) ) | 
						
							| 31 |  | elsni |  |-  ( n e. { 3 } -> n = 3 ) | 
						
							| 32 |  | 1ex |  |-  1 e. _V | 
						
							| 33 | 32 | snid |  |-  1 e. { 1 } | 
						
							| 34 | 33 | orci |  |-  ( 1 e. { 1 } \/ 1 e. Prime ) | 
						
							| 35 |  | elun |  |-  ( 1 e. ( { 1 } u. Prime ) <-> ( 1 e. { 1 } \/ 1 e. Prime ) ) | 
						
							| 36 | 34 35 | mpbir |  |-  1 e. ( { 1 } u. Prime ) | 
						
							| 37 | 36 1 | eleqtrri |  |-  1 e. P | 
						
							| 38 | 37 | a1i |  |-  ( n = 3 -> 1 e. P ) | 
						
							| 39 |  | simpl |  |-  ( ( n = 3 /\ p = 1 ) -> n = 3 ) | 
						
							| 40 |  | oveq1 |  |-  ( p = 1 -> ( p + q ) = ( 1 + q ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( p = 1 -> ( ( p + q ) + r ) = ( ( 1 + q ) + r ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( n = 3 /\ p = 1 ) -> ( ( p + q ) + r ) = ( ( 1 + q ) + r ) ) | 
						
							| 43 | 39 42 | eqeq12d |  |-  ( ( n = 3 /\ p = 1 ) -> ( n = ( ( p + q ) + r ) <-> 3 = ( ( 1 + q ) + r ) ) ) | 
						
							| 44 | 43 | 2rexbidv |  |-  ( ( n = 3 /\ p = 1 ) -> ( E. q e. P E. r e. P n = ( ( p + q ) + r ) <-> E. q e. P E. r e. P 3 = ( ( 1 + q ) + r ) ) ) | 
						
							| 45 |  | oveq2 |  |-  ( q = 1 -> ( 1 + q ) = ( 1 + 1 ) ) | 
						
							| 46 | 45 | oveq1d |  |-  ( q = 1 -> ( ( 1 + q ) + r ) = ( ( 1 + 1 ) + r ) ) | 
						
							| 47 | 46 | eqeq2d |  |-  ( q = 1 -> ( 3 = ( ( 1 + q ) + r ) <-> 3 = ( ( 1 + 1 ) + r ) ) ) | 
						
							| 48 | 47 | rexbidv |  |-  ( q = 1 -> ( E. r e. P 3 = ( ( 1 + q ) + r ) <-> E. r e. P 3 = ( ( 1 + 1 ) + r ) ) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( n = 3 /\ q = 1 ) -> ( E. r e. P 3 = ( ( 1 + q ) + r ) <-> E. r e. P 3 = ( ( 1 + 1 ) + r ) ) ) | 
						
							| 50 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 51 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 52 | 51 | oveq1i |  |-  ( 2 + 1 ) = ( ( 1 + 1 ) + 1 ) | 
						
							| 53 | 50 52 | eqtri |  |-  3 = ( ( 1 + 1 ) + 1 ) | 
						
							| 54 |  | oveq2 |  |-  ( r = 1 -> ( ( 1 + 1 ) + r ) = ( ( 1 + 1 ) + 1 ) ) | 
						
							| 55 | 53 54 | eqtr4id |  |-  ( r = 1 -> 3 = ( ( 1 + 1 ) + r ) ) | 
						
							| 56 | 55 | adantl |  |-  ( ( n = 3 /\ r = 1 ) -> 3 = ( ( 1 + 1 ) + r ) ) | 
						
							| 57 | 38 56 | rspcedeq2vd |  |-  ( n = 3 -> E. r e. P 3 = ( ( 1 + 1 ) + r ) ) | 
						
							| 58 | 38 49 57 | rspcedvd |  |-  ( n = 3 -> E. q e. P E. r e. P 3 = ( ( 1 + q ) + r ) ) | 
						
							| 59 | 38 44 58 | rspcedvd |  |-  ( n = 3 -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 60 | 31 59 | syl |  |-  ( n e. { 3 } -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 61 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 62 |  | df-5 |  |-  5 = ( 4 + 1 ) | 
						
							| 63 | 61 62 | oveq12i |  |-  ( ( 3 + 1 ) ..^ 5 ) = ( 4 ..^ ( 4 + 1 ) ) | 
						
							| 64 |  | 4z |  |-  4 e. ZZ | 
						
							| 65 |  | fzval3 |  |-  ( 4 e. ZZ -> ( 4 ... 4 ) = ( 4 ..^ ( 4 + 1 ) ) ) | 
						
							| 66 | 64 65 | ax-mp |  |-  ( 4 ... 4 ) = ( 4 ..^ ( 4 + 1 ) ) | 
						
							| 67 | 63 66 | eqtr4i |  |-  ( ( 3 + 1 ) ..^ 5 ) = ( 4 ... 4 ) | 
						
							| 68 | 67 | eleq2i |  |-  ( n e. ( ( 3 + 1 ) ..^ 5 ) <-> n e. ( 4 ... 4 ) ) | 
						
							| 69 |  | fzsn |  |-  ( 4 e. ZZ -> ( 4 ... 4 ) = { 4 } ) | 
						
							| 70 | 64 69 | ax-mp |  |-  ( 4 ... 4 ) = { 4 } | 
						
							| 71 | 70 | eleq2i |  |-  ( n e. ( 4 ... 4 ) <-> n e. { 4 } ) | 
						
							| 72 | 68 71 | bitri |  |-  ( n e. ( ( 3 + 1 ) ..^ 5 ) <-> n e. { 4 } ) | 
						
							| 73 |  | elsni |  |-  ( n e. { 4 } -> n = 4 ) | 
						
							| 74 |  | 2prm |  |-  2 e. Prime | 
						
							| 75 | 74 | olci |  |-  ( 2 e. { 1 } \/ 2 e. Prime ) | 
						
							| 76 |  | elun |  |-  ( 2 e. ( { 1 } u. Prime ) <-> ( 2 e. { 1 } \/ 2 e. Prime ) ) | 
						
							| 77 | 75 76 | mpbir |  |-  2 e. ( { 1 } u. Prime ) | 
						
							| 78 | 77 1 | eleqtrri |  |-  2 e. P | 
						
							| 79 | 78 | a1i |  |-  ( n = 4 -> 2 e. P ) | 
						
							| 80 |  | oveq1 |  |-  ( p = 2 -> ( p + q ) = ( 2 + q ) ) | 
						
							| 81 | 80 | oveq1d |  |-  ( p = 2 -> ( ( p + q ) + r ) = ( ( 2 + q ) + r ) ) | 
						
							| 82 | 81 | eqeq2d |  |-  ( p = 2 -> ( n = ( ( p + q ) + r ) <-> n = ( ( 2 + q ) + r ) ) ) | 
						
							| 83 | 82 | 2rexbidv |  |-  ( p = 2 -> ( E. q e. P E. r e. P n = ( ( p + q ) + r ) <-> E. q e. P E. r e. P n = ( ( 2 + q ) + r ) ) ) | 
						
							| 84 | 83 | adantl |  |-  ( ( n = 4 /\ p = 2 ) -> ( E. q e. P E. r e. P n = ( ( p + q ) + r ) <-> E. q e. P E. r e. P n = ( ( 2 + q ) + r ) ) ) | 
						
							| 85 | 37 | a1i |  |-  ( n = 4 -> 1 e. P ) | 
						
							| 86 |  | oveq2 |  |-  ( q = 1 -> ( 2 + q ) = ( 2 + 1 ) ) | 
						
							| 87 | 86 | oveq1d |  |-  ( q = 1 -> ( ( 2 + q ) + r ) = ( ( 2 + 1 ) + r ) ) | 
						
							| 88 | 87 | eqeq2d |  |-  ( q = 1 -> ( n = ( ( 2 + q ) + r ) <-> n = ( ( 2 + 1 ) + r ) ) ) | 
						
							| 89 | 88 | rexbidv |  |-  ( q = 1 -> ( E. r e. P n = ( ( 2 + q ) + r ) <-> E. r e. P n = ( ( 2 + 1 ) + r ) ) ) | 
						
							| 90 | 89 | adantl |  |-  ( ( n = 4 /\ q = 1 ) -> ( E. r e. P n = ( ( 2 + q ) + r ) <-> E. r e. P n = ( ( 2 + 1 ) + r ) ) ) | 
						
							| 91 |  | simpl |  |-  ( ( n = 4 /\ r = 1 ) -> n = 4 ) | 
						
							| 92 |  | df-4 |  |-  4 = ( 3 + 1 ) | 
						
							| 93 | 50 | oveq1i |  |-  ( 3 + 1 ) = ( ( 2 + 1 ) + 1 ) | 
						
							| 94 | 92 93 | eqtri |  |-  4 = ( ( 2 + 1 ) + 1 ) | 
						
							| 95 | 94 | a1i |  |-  ( ( n = 4 /\ r = 1 ) -> 4 = ( ( 2 + 1 ) + 1 ) ) | 
						
							| 96 |  | oveq2 |  |-  ( r = 1 -> ( ( 2 + 1 ) + r ) = ( ( 2 + 1 ) + 1 ) ) | 
						
							| 97 | 96 | eqcomd |  |-  ( r = 1 -> ( ( 2 + 1 ) + 1 ) = ( ( 2 + 1 ) + r ) ) | 
						
							| 98 | 97 | adantl |  |-  ( ( n = 4 /\ r = 1 ) -> ( ( 2 + 1 ) + 1 ) = ( ( 2 + 1 ) + r ) ) | 
						
							| 99 | 95 98 | eqtrd |  |-  ( ( n = 4 /\ r = 1 ) -> 4 = ( ( 2 + 1 ) + r ) ) | 
						
							| 100 | 91 99 | eqtrd |  |-  ( ( n = 4 /\ r = 1 ) -> n = ( ( 2 + 1 ) + r ) ) | 
						
							| 101 | 85 100 | rspcedeq2vd |  |-  ( n = 4 -> E. r e. P n = ( ( 2 + 1 ) + r ) ) | 
						
							| 102 | 85 90 101 | rspcedvd |  |-  ( n = 4 -> E. q e. P E. r e. P n = ( ( 2 + q ) + r ) ) | 
						
							| 103 | 79 84 102 | rspcedvd |  |-  ( n = 4 -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 104 | 73 103 | syl |  |-  ( n e. { 4 } -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 105 | 72 104 | sylbi |  |-  ( n e. ( ( 3 + 1 ) ..^ 5 ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 106 | 60 105 | jaoi |  |-  ( ( n e. { 3 } \/ n e. ( ( 3 + 1 ) ..^ 5 ) ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 107 | 30 106 | sylbi |  |-  ( n e. ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 108 |  | elsni |  |-  ( n e. { 5 } -> n = 5 ) | 
						
							| 109 |  | 3prm |  |-  3 e. Prime | 
						
							| 110 | 109 | olci |  |-  ( 3 e. { 1 } \/ 3 e. Prime ) | 
						
							| 111 |  | elun |  |-  ( 3 e. ( { 1 } u. Prime ) <-> ( 3 e. { 1 } \/ 3 e. Prime ) ) | 
						
							| 112 | 110 111 | mpbir |  |-  3 e. ( { 1 } u. Prime ) | 
						
							| 113 | 112 1 | eleqtrri |  |-  3 e. P | 
						
							| 114 | 113 | a1i |  |-  ( n = 5 -> 3 e. P ) | 
						
							| 115 |  | oveq1 |  |-  ( p = 3 -> ( p + q ) = ( 3 + q ) ) | 
						
							| 116 | 115 | oveq1d |  |-  ( p = 3 -> ( ( p + q ) + r ) = ( ( 3 + q ) + r ) ) | 
						
							| 117 | 116 | eqeq2d |  |-  ( p = 3 -> ( n = ( ( p + q ) + r ) <-> n = ( ( 3 + q ) + r ) ) ) | 
						
							| 118 | 117 | 2rexbidv |  |-  ( p = 3 -> ( E. q e. P E. r e. P n = ( ( p + q ) + r ) <-> E. q e. P E. r e. P n = ( ( 3 + q ) + r ) ) ) | 
						
							| 119 | 118 | adantl |  |-  ( ( n = 5 /\ p = 3 ) -> ( E. q e. P E. r e. P n = ( ( p + q ) + r ) <-> E. q e. P E. r e. P n = ( ( 3 + q ) + r ) ) ) | 
						
							| 120 | 37 | a1i |  |-  ( n = 5 -> 1 e. P ) | 
						
							| 121 |  | oveq2 |  |-  ( q = 1 -> ( 3 + q ) = ( 3 + 1 ) ) | 
						
							| 122 | 121 | oveq1d |  |-  ( q = 1 -> ( ( 3 + q ) + r ) = ( ( 3 + 1 ) + r ) ) | 
						
							| 123 | 122 | eqeq2d |  |-  ( q = 1 -> ( n = ( ( 3 + q ) + r ) <-> n = ( ( 3 + 1 ) + r ) ) ) | 
						
							| 124 | 123 | rexbidv |  |-  ( q = 1 -> ( E. r e. P n = ( ( 3 + q ) + r ) <-> E. r e. P n = ( ( 3 + 1 ) + r ) ) ) | 
						
							| 125 | 124 | adantl |  |-  ( ( n = 5 /\ q = 1 ) -> ( E. r e. P n = ( ( 3 + q ) + r ) <-> E. r e. P n = ( ( 3 + 1 ) + r ) ) ) | 
						
							| 126 |  | simpl |  |-  ( ( n = 5 /\ r = 1 ) -> n = 5 ) | 
						
							| 127 | 92 | oveq1i |  |-  ( 4 + 1 ) = ( ( 3 + 1 ) + 1 ) | 
						
							| 128 | 62 127 | eqtri |  |-  5 = ( ( 3 + 1 ) + 1 ) | 
						
							| 129 |  | oveq2 |  |-  ( r = 1 -> ( ( 3 + 1 ) + r ) = ( ( 3 + 1 ) + 1 ) ) | 
						
							| 130 | 128 129 | eqtr4id |  |-  ( r = 1 -> 5 = ( ( 3 + 1 ) + r ) ) | 
						
							| 131 | 130 | adantl |  |-  ( ( n = 5 /\ r = 1 ) -> 5 = ( ( 3 + 1 ) + r ) ) | 
						
							| 132 | 126 131 | eqtrd |  |-  ( ( n = 5 /\ r = 1 ) -> n = ( ( 3 + 1 ) + r ) ) | 
						
							| 133 | 120 132 | rspcedeq2vd |  |-  ( n = 5 -> E. r e. P n = ( ( 3 + 1 ) + r ) ) | 
						
							| 134 | 120 125 133 | rspcedvd |  |-  ( n = 5 -> E. q e. P E. r e. P n = ( ( 3 + q ) + r ) ) | 
						
							| 135 | 114 119 134 | rspcedvd |  |-  ( n = 5 -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 136 | 108 135 | syl |  |-  ( n e. { 5 } -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 137 | 107 136 | jaoi |  |-  ( ( n e. ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) \/ n e. { 5 } ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 138 | 29 137 | sylbi |  |-  ( n e. ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 139 | 138 | a1d |  |-  ( n e. ( ( { 3 } u. ( ( 3 + 1 ) ..^ 5 ) ) u. { 5 } ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) | 
						
							| 140 | 28 139 | sylbi |  |-  ( n e. ( 3 ... ( 6 - 1 ) ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) | 
						
							| 141 |  | sbgoldbm |  |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> A. n e. ( ZZ>= ` 6 ) E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) ) | 
						
							| 142 |  | rspa |  |-  ( ( A. n e. ( ZZ>= ` 6 ) E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) /\ n e. ( ZZ>= ` 6 ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) ) | 
						
							| 143 |  | ssun2 |  |-  Prime C_ ( { 1 } u. Prime ) | 
						
							| 144 | 143 1 | sseqtrri |  |-  Prime C_ P | 
						
							| 145 |  | rexss |  |-  ( Prime C_ P -> ( E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) <-> E. p e. P ( p e. Prime /\ E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) ) ) ) | 
						
							| 146 | 144 145 | ax-mp |  |-  ( E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) <-> E. p e. P ( p e. Prime /\ E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) ) ) | 
						
							| 147 |  | rexss |  |-  ( Prime C_ P -> ( E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) <-> E. q e. P ( q e. Prime /\ E. r e. Prime n = ( ( p + q ) + r ) ) ) ) | 
						
							| 148 | 144 147 | ax-mp |  |-  ( E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) <-> E. q e. P ( q e. Prime /\ E. r e. Prime n = ( ( p + q ) + r ) ) ) | 
						
							| 149 |  | rexss |  |-  ( Prime C_ P -> ( E. r e. Prime n = ( ( p + q ) + r ) <-> E. r e. P ( r e. Prime /\ n = ( ( p + q ) + r ) ) ) ) | 
						
							| 150 | 144 149 | ax-mp |  |-  ( E. r e. Prime n = ( ( p + q ) + r ) <-> E. r e. P ( r e. Prime /\ n = ( ( p + q ) + r ) ) ) | 
						
							| 151 |  | simpr |  |-  ( ( r e. Prime /\ n = ( ( p + q ) + r ) ) -> n = ( ( p + q ) + r ) ) | 
						
							| 152 | 151 | reximi |  |-  ( E. r e. P ( r e. Prime /\ n = ( ( p + q ) + r ) ) -> E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 153 | 150 152 | sylbi |  |-  ( E. r e. Prime n = ( ( p + q ) + r ) -> E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 154 | 153 | adantl |  |-  ( ( q e. Prime /\ E. r e. Prime n = ( ( p + q ) + r ) ) -> E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 155 | 154 | reximi |  |-  ( E. q e. P ( q e. Prime /\ E. r e. Prime n = ( ( p + q ) + r ) ) -> E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 156 | 148 155 | sylbi |  |-  ( E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) -> E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 157 | 156 | adantl |  |-  ( ( p e. Prime /\ E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) ) -> E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 158 | 157 | reximi |  |-  ( E. p e. P ( p e. Prime /\ E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 159 | 146 158 | sylbi |  |-  ( E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 160 | 142 159 | syl |  |-  ( ( A. n e. ( ZZ>= ` 6 ) E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) /\ n e. ( ZZ>= ` 6 ) ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) | 
						
							| 161 | 160 | ex |  |-  ( A. n e. ( ZZ>= ` 6 ) E. p e. Prime E. q e. Prime E. r e. Prime n = ( ( p + q ) + r ) -> ( n e. ( ZZ>= ` 6 ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) | 
						
							| 162 | 141 161 | syl |  |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( n e. ( ZZ>= ` 6 ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) | 
						
							| 163 | 162 | com12 |  |-  ( n e. ( ZZ>= ` 6 ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) | 
						
							| 164 | 140 163 | jaoi |  |-  ( ( n e. ( 3 ... ( 6 - 1 ) ) \/ n e. ( ZZ>= ` 6 ) ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) | 
						
							| 165 | 15 164 | sylbi |  |-  ( n e. ( ( 3 ... ( 6 - 1 ) ) u. ( ZZ>= ` 6 ) ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) | 
						
							| 166 | 165 | com12 |  |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( n e. ( ( 3 ... ( 6 - 1 ) ) u. ( ZZ>= ` 6 ) ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) | 
						
							| 167 | 14 166 | biimtrid |  |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( n e. ( ZZ>= ` 3 ) -> E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) ) | 
						
							| 168 | 2 167 | ralrimi |  |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> A. n e. ( ZZ>= ` 3 ) E. p e. P E. q e. P E. r e. P n = ( ( p + q ) + r ) ) |