| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn |  |-  2 e. NN | 
						
							| 2 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 3 |  | 1ex |  |-  1 e. _V | 
						
							| 4 |  | 2ex |  |-  2 e. _V | 
						
							| 5 | 3 4 4 4 | fpr |  |-  ( 1 =/= 2 -> { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> { 2 , 2 } ) | 
						
							| 6 |  | 2prm |  |-  2 e. Prime | 
						
							| 7 | 6 6 | pm3.2i |  |-  ( 2 e. Prime /\ 2 e. Prime ) | 
						
							| 8 | 4 4 | prss |  |-  ( ( 2 e. Prime /\ 2 e. Prime ) <-> { 2 , 2 } C_ Prime ) | 
						
							| 9 | 7 8 | mpbi |  |-  { 2 , 2 } C_ Prime | 
						
							| 10 |  | fss |  |-  ( ( { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> { 2 , 2 } /\ { 2 , 2 } C_ Prime ) -> { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> Prime ) | 
						
							| 11 | 9 10 | mpan2 |  |-  ( { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> { 2 , 2 } -> { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> Prime ) | 
						
							| 12 | 2 5 11 | mp2b |  |-  { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> Prime | 
						
							| 13 |  | prmex |  |-  Prime e. _V | 
						
							| 14 |  | prex |  |-  { 1 , 2 } e. _V | 
						
							| 15 | 13 14 | elmap |  |-  ( { <. 1 , 2 >. , <. 2 , 2 >. } e. ( Prime ^m { 1 , 2 } ) <-> { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> Prime ) | 
						
							| 16 | 12 15 | mpbir |  |-  { <. 1 , 2 >. , <. 2 , 2 >. } e. ( Prime ^m { 1 , 2 } ) | 
						
							| 17 |  | 2re |  |-  2 e. RR | 
						
							| 18 |  | 3re |  |-  3 e. RR | 
						
							| 19 |  | 2lt3 |  |-  2 < 3 | 
						
							| 20 | 17 18 19 | ltleii |  |-  2 <_ 3 | 
						
							| 21 |  | 2cn |  |-  2 e. CC | 
						
							| 22 |  | fveq2 |  |-  ( k = 1 -> ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) = ( { <. 1 , 2 >. , <. 2 , 2 >. } ` 1 ) ) | 
						
							| 23 | 3 4 | fvpr1 |  |-  ( 1 =/= 2 -> ( { <. 1 , 2 >. , <. 2 , 2 >. } ` 1 ) = 2 ) | 
						
							| 24 | 2 23 | ax-mp |  |-  ( { <. 1 , 2 >. , <. 2 , 2 >. } ` 1 ) = 2 | 
						
							| 25 | 22 24 | eqtrdi |  |-  ( k = 1 -> ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) = 2 ) | 
						
							| 26 |  | fveq2 |  |-  ( k = 2 -> ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) = ( { <. 1 , 2 >. , <. 2 , 2 >. } ` 2 ) ) | 
						
							| 27 | 4 4 | fvpr2 |  |-  ( 1 =/= 2 -> ( { <. 1 , 2 >. , <. 2 , 2 >. } ` 2 ) = 2 ) | 
						
							| 28 | 2 27 | ax-mp |  |-  ( { <. 1 , 2 >. , <. 2 , 2 >. } ` 2 ) = 2 | 
						
							| 29 | 26 28 | eqtrdi |  |-  ( k = 2 -> ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) = 2 ) | 
						
							| 30 |  | id |  |-  ( 2 e. CC -> 2 e. CC ) | 
						
							| 31 | 30 | ancri |  |-  ( 2 e. CC -> ( 2 e. CC /\ 2 e. CC ) ) | 
						
							| 32 | 3 | jctl |  |-  ( 2 e. CC -> ( 1 e. _V /\ 2 e. CC ) ) | 
						
							| 33 | 2 | a1i |  |-  ( 2 e. CC -> 1 =/= 2 ) | 
						
							| 34 | 25 29 31 32 33 | sumpr |  |-  ( 2 e. CC -> sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) = ( 2 + 2 ) ) | 
						
							| 35 | 21 34 | ax-mp |  |-  sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) = ( 2 + 2 ) | 
						
							| 36 |  | 2p2e4 |  |-  ( 2 + 2 ) = 4 | 
						
							| 37 | 35 36 | eqtr2i |  |-  4 = sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) | 
						
							| 38 | 20 37 | pm3.2i |  |-  ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) ) | 
						
							| 39 |  | fveq1 |  |-  ( f = { <. 1 , 2 >. , <. 2 , 2 >. } -> ( f ` k ) = ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) ) | 
						
							| 40 | 39 | sumeq2sdv |  |-  ( f = { <. 1 , 2 >. , <. 2 , 2 >. } -> sum_ k e. { 1 , 2 } ( f ` k ) = sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) ) | 
						
							| 41 | 40 | eqeq2d |  |-  ( f = { <. 1 , 2 >. , <. 2 , 2 >. } -> ( 4 = sum_ k e. { 1 , 2 } ( f ` k ) <-> 4 = sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) ) ) | 
						
							| 42 | 41 | anbi2d |  |-  ( f = { <. 1 , 2 >. , <. 2 , 2 >. } -> ( ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) <-> ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) ) ) ) | 
						
							| 43 | 42 | rspcev |  |-  ( ( { <. 1 , 2 >. , <. 2 , 2 >. } e. ( Prime ^m { 1 , 2 } ) /\ ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) ) ) -> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) ) | 
						
							| 44 | 16 38 43 | mp2an |  |-  E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) | 
						
							| 45 |  | oveq2 |  |-  ( d = 2 -> ( 1 ... d ) = ( 1 ... 2 ) ) | 
						
							| 46 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 47 | 46 | oveq2i |  |-  ( 1 ... 2 ) = ( 1 ... ( 1 + 1 ) ) | 
						
							| 48 |  | 1z |  |-  1 e. ZZ | 
						
							| 49 |  | fzpr |  |-  ( 1 e. ZZ -> ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } ) | 
						
							| 50 | 48 49 | ax-mp |  |-  ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } | 
						
							| 51 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 52 | 51 | preq2i |  |-  { 1 , ( 1 + 1 ) } = { 1 , 2 } | 
						
							| 53 | 50 52 | eqtri |  |-  ( 1 ... ( 1 + 1 ) ) = { 1 , 2 } | 
						
							| 54 | 47 53 | eqtri |  |-  ( 1 ... 2 ) = { 1 , 2 } | 
						
							| 55 | 45 54 | eqtrdi |  |-  ( d = 2 -> ( 1 ... d ) = { 1 , 2 } ) | 
						
							| 56 | 55 | oveq2d |  |-  ( d = 2 -> ( Prime ^m ( 1 ... d ) ) = ( Prime ^m { 1 , 2 } ) ) | 
						
							| 57 |  | breq1 |  |-  ( d = 2 -> ( d <_ 3 <-> 2 <_ 3 ) ) | 
						
							| 58 | 55 | sumeq1d |  |-  ( d = 2 -> sum_ k e. ( 1 ... d ) ( f ` k ) = sum_ k e. { 1 , 2 } ( f ` k ) ) | 
						
							| 59 | 58 | eqeq2d |  |-  ( d = 2 -> ( 4 = sum_ k e. ( 1 ... d ) ( f ` k ) <-> 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) ) | 
						
							| 60 | 57 59 | anbi12d |  |-  ( d = 2 -> ( ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) ) ) | 
						
							| 61 | 56 60 | rexeqbidv |  |-  ( d = 2 -> ( E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) ) ) | 
						
							| 62 | 61 | rspcev |  |-  ( ( 2 e. NN /\ E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 63 | 1 44 62 | mp2an |  |-  E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) |