Metamath Proof Explorer


Theorem nnsum3primes4

Description: 4 is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020)

Ref Expression
Assertion nnsum3primes4 df1dd34=k=1dfk

Proof

Step Hyp Ref Expression
1 2nn 2
2 1ne2 12
3 1ex 1V
4 2ex 2V
5 3 4 4 4 fpr 121222:1222
6 2prm 2
7 6 6 pm3.2i 22
8 4 4 prss 2222
9 7 8 mpbi 22
10 fss 1222:1222221222:12
11 9 10 mpan2 1222:12221222:12
12 2 5 11 mp2b 1222:12
13 prmex V
14 prex 12V
15 13 14 elmap 1222121222:12
16 12 15 mpbir 122212
17 2re 2
18 3re 3
19 2lt3 2<3
20 17 18 19 ltleii 23
21 2cn 2
22 fveq2 k=11222k=12221
23 3 4 fvpr1 1212221=2
24 2 23 ax-mp 12221=2
25 22 24 eqtrdi k=11222k=2
26 fveq2 k=21222k=12222
27 4 4 fvpr2 1212222=2
28 2 27 ax-mp 12222=2
29 26 28 eqtrdi k=21222k=2
30 id 22
31 30 ancri 222
32 3 jctl 21V2
33 2 a1i 212
34 25 29 31 32 33 sumpr 2k121222k=2+2
35 21 34 ax-mp k121222k=2+2
36 2p2e4 2+2=4
37 35 36 eqtr2i 4=k121222k
38 20 37 pm3.2i 234=k121222k
39 fveq1 f=1222fk=1222k
40 39 sumeq2sdv f=1222k12fk=k121222k
41 40 eqeq2d f=12224=k12fk4=k121222k
42 41 anbi2d f=1222234=k12fk234=k121222k
43 42 rspcev 122212234=k121222kf12234=k12fk
44 16 38 43 mp2an f12234=k12fk
45 oveq2 d=21d=12
46 df-2 2=1+1
47 46 oveq2i 12=11+1
48 1z 1
49 fzpr 111+1=11+1
50 48 49 ax-mp 11+1=11+1
51 1p1e2 1+1=2
52 51 preq2i 11+1=12
53 50 52 eqtri 11+1=12
54 47 53 eqtri 12=12
55 45 54 eqtrdi d=21d=12
56 55 oveq2d d=21d=12
57 breq1 d=2d323
58 55 sumeq1d d=2k=1dfk=k12fk
59 58 eqeq2d d=24=k=1dfk4=k12fk
60 57 59 anbi12d d=2d34=k=1dfk234=k12fk
61 56 60 rexeqbidv d=2f1dd34=k=1dfkf12234=k12fk
62 61 rspcev 2f12234=k12fkdf1dd34=k=1dfk
63 1 44 62 mp2an df1dd34=k=1dfk