| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unidm |  |-  ( { N } u. { N } ) = { N } | 
						
							| 2 | 1 | eqcomi |  |-  { N } = ( { N } u. { N } ) | 
						
							| 3 |  | oveq1 |  |-  ( M = N -> ( M ... N ) = ( N ... N ) ) | 
						
							| 4 |  | fzsn |  |-  ( N e. ZZ -> ( N ... N ) = { N } ) | 
						
							| 5 | 3 4 | sylan9eqr |  |-  ( ( N e. ZZ /\ M = N ) -> ( M ... N ) = { N } ) | 
						
							| 6 |  | sneq |  |-  ( M = N -> { M } = { N } ) | 
						
							| 7 |  | oveq1 |  |-  ( M = N -> ( M + 1 ) = ( N + 1 ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( M = N -> ( ( M + 1 ) ..^ N ) = ( ( N + 1 ) ..^ N ) ) | 
						
							| 9 | 6 8 | uneq12d |  |-  ( M = N -> ( { M } u. ( ( M + 1 ) ..^ N ) ) = ( { N } u. ( ( N + 1 ) ..^ N ) ) ) | 
						
							| 10 | 9 | uneq1d |  |-  ( M = N -> ( ( { M } u. ( ( M + 1 ) ..^ N ) ) u. { N } ) = ( ( { N } u. ( ( N + 1 ) ..^ N ) ) u. { N } ) ) | 
						
							| 11 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 12 | 11 | lep1d |  |-  ( N e. ZZ -> N <_ ( N + 1 ) ) | 
						
							| 13 |  | peano2z |  |-  ( N e. ZZ -> ( N + 1 ) e. ZZ ) | 
						
							| 14 | 13 | zred |  |-  ( N e. ZZ -> ( N + 1 ) e. RR ) | 
						
							| 15 | 11 14 | lenltd |  |-  ( N e. ZZ -> ( N <_ ( N + 1 ) <-> -. ( N + 1 ) < N ) ) | 
						
							| 16 | 12 15 | mpbid |  |-  ( N e. ZZ -> -. ( N + 1 ) < N ) | 
						
							| 17 |  | fzonlt0 |  |-  ( ( ( N + 1 ) e. ZZ /\ N e. ZZ ) -> ( -. ( N + 1 ) < N <-> ( ( N + 1 ) ..^ N ) = (/) ) ) | 
						
							| 18 | 13 17 | mpancom |  |-  ( N e. ZZ -> ( -. ( N + 1 ) < N <-> ( ( N + 1 ) ..^ N ) = (/) ) ) | 
						
							| 19 | 16 18 | mpbid |  |-  ( N e. ZZ -> ( ( N + 1 ) ..^ N ) = (/) ) | 
						
							| 20 | 19 | uneq2d |  |-  ( N e. ZZ -> ( { N } u. ( ( N + 1 ) ..^ N ) ) = ( { N } u. (/) ) ) | 
						
							| 21 |  | un0 |  |-  ( { N } u. (/) ) = { N } | 
						
							| 22 | 20 21 | eqtrdi |  |-  ( N e. ZZ -> ( { N } u. ( ( N + 1 ) ..^ N ) ) = { N } ) | 
						
							| 23 | 22 | uneq1d |  |-  ( N e. ZZ -> ( ( { N } u. ( ( N + 1 ) ..^ N ) ) u. { N } ) = ( { N } u. { N } ) ) | 
						
							| 24 | 10 23 | sylan9eqr |  |-  ( ( N e. ZZ /\ M = N ) -> ( ( { M } u. ( ( M + 1 ) ..^ N ) ) u. { N } ) = ( { N } u. { N } ) ) | 
						
							| 25 | 2 5 24 | 3eqtr4a |  |-  ( ( N e. ZZ /\ M = N ) -> ( M ... N ) = ( ( { M } u. ( ( M + 1 ) ..^ N ) ) u. { N } ) ) | 
						
							| 26 | 25 | ex |  |-  ( N e. ZZ -> ( M = N -> ( M ... N ) = ( ( { M } u. ( ( M + 1 ) ..^ N ) ) u. { N } ) ) ) | 
						
							| 27 |  | eluzelz |  |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ ) | 
						
							| 28 | 26 27 | syl11 |  |-  ( M = N -> ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( { M } u. ( ( M + 1 ) ..^ N ) ) u. { N } ) ) ) | 
						
							| 29 |  | fzisfzounsn |  |-  ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( M ..^ N ) u. { N } ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( -. M = N /\ N e. ( ZZ>= ` M ) ) -> ( M ... N ) = ( ( M ..^ N ) u. { N } ) ) | 
						
							| 31 |  | eluz2 |  |-  ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) | 
						
							| 32 |  | simpl1 |  |-  ( ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) /\ -. M = N ) -> M e. ZZ ) | 
						
							| 33 |  | simpl2 |  |-  ( ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) /\ -. M = N ) -> N e. ZZ ) | 
						
							| 34 |  | nesym |  |-  ( N =/= M <-> -. M = N ) | 
						
							| 35 |  | zre |  |-  ( M e. ZZ -> M e. RR ) | 
						
							| 36 |  | ltlen |  |-  ( ( M e. RR /\ N e. RR ) -> ( M < N <-> ( M <_ N /\ N =/= M ) ) ) | 
						
							| 37 | 35 11 36 | syl2an |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M <_ N /\ N =/= M ) ) ) | 
						
							| 38 | 37 | biimprd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M <_ N /\ N =/= M ) -> M < N ) ) | 
						
							| 39 | 38 | exp4b |  |-  ( M e. ZZ -> ( N e. ZZ -> ( M <_ N -> ( N =/= M -> M < N ) ) ) ) | 
						
							| 40 | 39 | 3imp |  |-  ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( N =/= M -> M < N ) ) | 
						
							| 41 | 34 40 | biimtrrid |  |-  ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( -. M = N -> M < N ) ) | 
						
							| 42 | 41 | imp |  |-  ( ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) /\ -. M = N ) -> M < N ) | 
						
							| 43 | 32 33 42 | 3jca |  |-  ( ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) /\ -. M = N ) -> ( M e. ZZ /\ N e. ZZ /\ M < N ) ) | 
						
							| 44 | 43 | ex |  |-  ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( -. M = N -> ( M e. ZZ /\ N e. ZZ /\ M < N ) ) ) | 
						
							| 45 | 31 44 | sylbi |  |-  ( N e. ( ZZ>= ` M ) -> ( -. M = N -> ( M e. ZZ /\ N e. ZZ /\ M < N ) ) ) | 
						
							| 46 | 45 | impcom |  |-  ( ( -. M = N /\ N e. ( ZZ>= ` M ) ) -> ( M e. ZZ /\ N e. ZZ /\ M < N ) ) | 
						
							| 47 |  | fzopred |  |-  ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( M ..^ N ) = ( { M } u. ( ( M + 1 ) ..^ N ) ) ) | 
						
							| 48 | 46 47 | syl |  |-  ( ( -. M = N /\ N e. ( ZZ>= ` M ) ) -> ( M ..^ N ) = ( { M } u. ( ( M + 1 ) ..^ N ) ) ) | 
						
							| 49 | 48 | uneq1d |  |-  ( ( -. M = N /\ N e. ( ZZ>= ` M ) ) -> ( ( M ..^ N ) u. { N } ) = ( ( { M } u. ( ( M + 1 ) ..^ N ) ) u. { N } ) ) | 
						
							| 50 | 30 49 | eqtrd |  |-  ( ( -. M = N /\ N e. ( ZZ>= ` M ) ) -> ( M ... N ) = ( ( { M } u. ( ( M + 1 ) ..^ N ) ) u. { N } ) ) | 
						
							| 51 | 50 | ex |  |-  ( -. M = N -> ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( { M } u. ( ( M + 1 ) ..^ N ) ) u. { N } ) ) ) | 
						
							| 52 | 28 51 | pm2.61i |  |-  ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( { M } u. ( ( M + 1 ) ..^ N ) ) u. { N } ) ) |