| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 | ⊢ ( 𝑛  =  𝑚  →  ( 4  <  𝑛  ↔  4  <  𝑚 ) ) | 
						
							| 2 |  | eleq1w | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ∈   GoldbachEven   ↔  𝑚  ∈   GoldbachEven  ) ) | 
						
							| 3 | 1 2 | imbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  ↔  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  ) ) ) | 
						
							| 4 | 3 | cbvralvw | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  ↔  ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  ) ) | 
						
							| 5 |  | eluz2 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 6 )  ↔  ( 6  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  6  ≤  𝑛 ) ) | 
						
							| 6 |  | zeoALTV | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝑛  ∈   Even   ∨  𝑛  ∈   Odd  ) ) | 
						
							| 7 |  | sgoldbeven3prm | ⊢ ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ( ( 𝑛  ∈   Even   ∧  6  ≤  𝑛 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 8 | 7 | expdcom | ⊢ ( 𝑛  ∈   Even   →  ( 6  ≤  𝑛  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 9 |  | sbgoldbwt | ⊢ ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) ) | 
						
							| 10 |  | rspa | ⊢ ( ( ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  ∧  𝑛  ∈   Odd  )  →  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) ) | 
						
							| 11 |  | df-6 | ⊢ 6  =  ( 5  +  1 ) | 
						
							| 12 | 11 | breq1i | ⊢ ( 6  ≤  𝑛  ↔  ( 5  +  1 )  ≤  𝑛 ) | 
						
							| 13 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 14 | 13 | nnzi | ⊢ 5  ∈  ℤ | 
						
							| 15 |  | oddz | ⊢ ( 𝑛  ∈   Odd   →  𝑛  ∈  ℤ ) | 
						
							| 16 |  | zltp1le | ⊢ ( ( 5  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( 5  <  𝑛  ↔  ( 5  +  1 )  ≤  𝑛 ) ) | 
						
							| 17 | 14 15 16 | sylancr | ⊢ ( 𝑛  ∈   Odd   →  ( 5  <  𝑛  ↔  ( 5  +  1 )  ≤  𝑛 ) ) | 
						
							| 18 | 17 | biimprd | ⊢ ( 𝑛  ∈   Odd   →  ( ( 5  +  1 )  ≤  𝑛  →  5  <  𝑛 ) ) | 
						
							| 19 | 12 18 | biimtrid | ⊢ ( 𝑛  ∈   Odd   →  ( 6  ≤  𝑛  →  5  <  𝑛 ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( 𝑛  ∈   Odd   ∧  6  ≤  𝑛 )  →  5  <  𝑛 ) | 
						
							| 21 |  | isgbow | ⊢ ( 𝑛  ∈   GoldbachOddW   ↔  ( 𝑛  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 22 | 21 | simprbi | ⊢ ( 𝑛  ∈   GoldbachOddW   →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝑛  ∈   Odd   ∧  6  ≤  𝑛 )  →  ( 𝑛  ∈   GoldbachOddW   →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 24 | 20 23 | embantd | ⊢ ( ( 𝑛  ∈   Odd   ∧  6  ≤  𝑛 )  →  ( ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 25 | 24 | ex | ⊢ ( 𝑛  ∈   Odd   →  ( 6  ≤  𝑛  →  ( ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 26 | 25 | com23 | ⊢ ( 𝑛  ∈   Odd   →  ( ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  →  ( 6  ≤  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  ∧  𝑛  ∈   Odd  )  →  ( ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  →  ( 6  ≤  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 28 | 10 27 | mpd | ⊢ ( ( ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  ∧  𝑛  ∈   Odd  )  →  ( 6  ≤  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 29 | 28 | ex | ⊢ ( ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  →  ( 𝑛  ∈   Odd   →  ( 6  ≤  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 30 | 29 | com23 | ⊢ ( ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  →  ( 6  ≤  𝑛  →  ( 𝑛  ∈   Odd   →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 31 | 9 30 | syl | ⊢ ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ( 6  ≤  𝑛  →  ( 𝑛  ∈   Odd   →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 32 | 31 | com13 | ⊢ ( 𝑛  ∈   Odd   →  ( 6  ≤  𝑛  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 33 | 8 32 | jaoi | ⊢ ( ( 𝑛  ∈   Even   ∨  𝑛  ∈   Odd  )  →  ( 6  ≤  𝑛  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 34 | 6 33 | syl | ⊢ ( 𝑛  ∈  ℤ  →  ( 6  ≤  𝑛  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( 𝑛  ∈  ℤ  ∧  6  ≤  𝑛 )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 36 | 35 | 3adant1 | ⊢ ( ( 6  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  6  ≤  𝑛 )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 37 | 5 36 | sylbi | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 6 )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 38 | 37 | impcom | ⊢ ( ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  ∧  𝑛  ∈  ( ℤ≥ ‘ 6 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 39 | 38 | ralrimiva | ⊢ ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 40 | 4 39 | sylbi | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) |