| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz | ⊢ ( 𝑚  ∈   Odd   →  𝑚  ∈  ℤ ) | 
						
							| 2 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 3 | 2 | nnzi | ⊢ 5  ∈  ℤ | 
						
							| 4 |  | zltp1le | ⊢ ( ( 5  ∈  ℤ  ∧  𝑚  ∈  ℤ )  →  ( 5  <  𝑚  ↔  ( 5  +  1 )  ≤  𝑚 ) ) | 
						
							| 5 | 3 4 | mpan | ⊢ ( 𝑚  ∈  ℤ  →  ( 5  <  𝑚  ↔  ( 5  +  1 )  ≤  𝑚 ) ) | 
						
							| 6 |  | 5p1e6 | ⊢ ( 5  +  1 )  =  6 | 
						
							| 7 | 6 | breq1i | ⊢ ( ( 5  +  1 )  ≤  𝑚  ↔  6  ≤  𝑚 ) | 
						
							| 8 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑚  ∈  ℤ  →  6  ∈  ℝ ) | 
						
							| 10 |  | zre | ⊢ ( 𝑚  ∈  ℤ  →  𝑚  ∈  ℝ ) | 
						
							| 11 | 9 10 | leloed | ⊢ ( 𝑚  ∈  ℤ  →  ( 6  ≤  𝑚  ↔  ( 6  <  𝑚  ∨  6  =  𝑚 ) ) ) | 
						
							| 12 | 7 11 | bitrid | ⊢ ( 𝑚  ∈  ℤ  →  ( ( 5  +  1 )  ≤  𝑚  ↔  ( 6  <  𝑚  ∨  6  =  𝑚 ) ) ) | 
						
							| 13 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 14 | 13 | nnzi | ⊢ 6  ∈  ℤ | 
						
							| 15 |  | zltp1le | ⊢ ( ( 6  ∈  ℤ  ∧  𝑚  ∈  ℤ )  →  ( 6  <  𝑚  ↔  ( 6  +  1 )  ≤  𝑚 ) ) | 
						
							| 16 | 14 15 | mpan | ⊢ ( 𝑚  ∈  ℤ  →  ( 6  <  𝑚  ↔  ( 6  +  1 )  ≤  𝑚 ) ) | 
						
							| 17 |  | 6p1e7 | ⊢ ( 6  +  1 )  =  7 | 
						
							| 18 | 17 | breq1i | ⊢ ( ( 6  +  1 )  ≤  𝑚  ↔  7  ≤  𝑚 ) | 
						
							| 19 |  | 7re | ⊢ 7  ∈  ℝ | 
						
							| 20 | 19 | a1i | ⊢ ( 𝑚  ∈  ℤ  →  7  ∈  ℝ ) | 
						
							| 21 | 20 10 | leloed | ⊢ ( 𝑚  ∈  ℤ  →  ( 7  ≤  𝑚  ↔  ( 7  <  𝑚  ∨  7  =  𝑚 ) ) ) | 
						
							| 22 | 18 21 | bitrid | ⊢ ( 𝑚  ∈  ℤ  →  ( ( 6  +  1 )  ≤  𝑚  ↔  ( 7  <  𝑚  ∨  7  =  𝑚 ) ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  →  𝑚  ∈   Odd  ) | 
						
							| 24 |  | 3odd | ⊢ 3  ∈   Odd | 
						
							| 25 | 23 24 | jctir | ⊢ ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  →  ( 𝑚  ∈   Odd   ∧  3  ∈   Odd  ) ) | 
						
							| 26 |  | omoeALTV | ⊢ ( ( 𝑚  ∈   Odd   ∧  3  ∈   Odd  )  →  ( 𝑚  −  3 )  ∈   Even  ) | 
						
							| 27 |  | breq2 | ⊢ ( 𝑛  =  ( 𝑚  −  3 )  →  ( 4  <  𝑛  ↔  4  <  ( 𝑚  −  3 ) ) ) | 
						
							| 28 |  | eleq1 | ⊢ ( 𝑛  =  ( 𝑚  −  3 )  →  ( 𝑛  ∈   GoldbachEven   ↔  ( 𝑚  −  3 )  ∈   GoldbachEven  ) ) | 
						
							| 29 | 27 28 | imbi12d | ⊢ ( 𝑛  =  ( 𝑚  −  3 )  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  ↔  ( 4  <  ( 𝑚  −  3 )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  ) ) ) | 
						
							| 30 | 29 | rspcv | ⊢ ( ( 𝑚  −  3 )  ∈   Even   →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 4  <  ( 𝑚  −  3 )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  ) ) ) | 
						
							| 31 | 25 26 30 | 3syl | ⊢ ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 4  <  ( 𝑚  −  3 )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  ) ) ) | 
						
							| 32 |  | 4p3e7 | ⊢ ( 4  +  3 )  =  7 | 
						
							| 33 | 32 | eqcomi | ⊢ 7  =  ( 4  +  3 ) | 
						
							| 34 | 33 | breq1i | ⊢ ( 7  <  𝑚  ↔  ( 4  +  3 )  <  𝑚 ) | 
						
							| 35 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 36 | 35 | a1i | ⊢ ( 𝑚  ∈  ℤ  →  4  ∈  ℝ ) | 
						
							| 37 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 38 | 37 | a1i | ⊢ ( 𝑚  ∈  ℤ  →  3  ∈  ℝ ) | 
						
							| 39 |  | ltaddsub | ⊢ ( ( 4  ∈  ℝ  ∧  3  ∈  ℝ  ∧  𝑚  ∈  ℝ )  →  ( ( 4  +  3 )  <  𝑚  ↔  4  <  ( 𝑚  −  3 ) ) ) | 
						
							| 40 | 39 | biimpd | ⊢ ( ( 4  ∈  ℝ  ∧  3  ∈  ℝ  ∧  𝑚  ∈  ℝ )  →  ( ( 4  +  3 )  <  𝑚  →  4  <  ( 𝑚  −  3 ) ) ) | 
						
							| 41 | 36 38 10 40 | syl3anc | ⊢ ( 𝑚  ∈  ℤ  →  ( ( 4  +  3 )  <  𝑚  →  4  <  ( 𝑚  −  3 ) ) ) | 
						
							| 42 | 34 41 | biimtrid | ⊢ ( 𝑚  ∈  ℤ  →  ( 7  <  𝑚  →  4  <  ( 𝑚  −  3 ) ) ) | 
						
							| 43 | 42 | impcom | ⊢ ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  →  4  <  ( 𝑚  −  3 ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  →  4  <  ( 𝑚  −  3 ) ) | 
						
							| 45 |  | pm2.27 | ⊢ ( 4  <  ( 𝑚  −  3 )  →  ( ( 4  <  ( 𝑚  −  3 )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  →  ( ( 4  <  ( 𝑚  −  3 )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  ) ) | 
						
							| 47 |  | isgbe | ⊢ ( ( 𝑚  −  3 )  ∈   GoldbachEven   ↔  ( ( 𝑚  −  3 )  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 48 |  | 3prm | ⊢ 3  ∈  ℙ | 
						
							| 49 | 48 | a1i | ⊢ ( 𝑚  ∈  ℤ  →  3  ∈  ℙ ) | 
						
							| 50 |  | zcn | ⊢ ( 𝑚  ∈  ℤ  →  𝑚  ∈  ℂ ) | 
						
							| 51 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 52 | 50 51 | jctir | ⊢ ( 𝑚  ∈  ℤ  →  ( 𝑚  ∈  ℂ  ∧  3  ∈  ℂ ) ) | 
						
							| 53 |  | npcan | ⊢ ( ( 𝑚  ∈  ℂ  ∧  3  ∈  ℂ )  →  ( ( 𝑚  −  3 )  +  3 )  =  𝑚 ) | 
						
							| 54 | 53 | eqcomd | ⊢ ( ( 𝑚  ∈  ℂ  ∧  3  ∈  ℂ )  →  𝑚  =  ( ( 𝑚  −  3 )  +  3 ) ) | 
						
							| 55 | 52 54 | syl | ⊢ ( 𝑚  ∈  ℤ  →  𝑚  =  ( ( 𝑚  −  3 )  +  3 ) ) | 
						
							| 56 |  | oveq2 | ⊢ ( 3  =  𝑟  →  ( ( 𝑚  −  3 )  +  3 )  =  ( ( 𝑚  −  3 )  +  𝑟 ) ) | 
						
							| 57 | 56 | eqcoms | ⊢ ( 𝑟  =  3  →  ( ( 𝑚  −  3 )  +  3 )  =  ( ( 𝑚  −  3 )  +  𝑟 ) ) | 
						
							| 58 | 55 57 | sylan9eq | ⊢ ( ( 𝑚  ∈  ℤ  ∧  𝑟  =  3 )  →  𝑚  =  ( ( 𝑚  −  3 )  +  𝑟 ) ) | 
						
							| 59 | 49 58 | rspcedeq2vd | ⊢ ( 𝑚  ∈  ℤ  →  ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑚  −  3 )  +  𝑟 ) ) | 
						
							| 60 |  | oveq1 | ⊢ ( ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 )  →  ( ( 𝑚  −  3 )  +  𝑟 )  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 61 | 60 | eqeq2d | ⊢ ( ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 )  →  ( 𝑚  =  ( ( 𝑚  −  3 )  +  𝑟 )  ↔  𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 62 | 61 | rexbidv | ⊢ ( ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 )  →  ( ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑚  −  3 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 63 | 59 62 | imbitrid | ⊢ ( ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 )  →  ( 𝑚  ∈  ℤ  →  ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 64 | 63 | 3ad2ant3 | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑚  ∈  ℤ  →  ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 65 | 64 | com12 | ⊢ ( 𝑚  ∈  ℤ  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 66 | 65 | ad4antlr | ⊢ ( ( ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 67 | 66 | reximdva | ⊢ ( ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  ∧  𝑝  ∈  ℙ )  →  ( ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 68 | 67 | reximdva | ⊢ ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 69 | 68 23 | jctild | ⊢ ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑚  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 70 |  | isgbow | ⊢ ( 𝑚  ∈   GoldbachOddW   ↔  ( 𝑚  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 71 | 69 70 | imbitrrdi | ⊢ ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  𝑚  ∈   GoldbachOddW  ) ) | 
						
							| 72 | 71 | adantld | ⊢ ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  →  ( ( ( 𝑚  −  3 )  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) ) )  →  𝑚  ∈   GoldbachOddW  ) ) | 
						
							| 73 | 47 72 | biimtrid | ⊢ ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  →  ( ( 𝑚  −  3 )  ∈   GoldbachEven   →  𝑚  ∈   GoldbachOddW  ) ) | 
						
							| 74 | 31 46 73 | 3syld | ⊢ ( ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  ∧  𝑚  ∈   Odd  )  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  𝑚  ∈   GoldbachOddW  ) ) | 
						
							| 75 | 74 | ex | ⊢ ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  →  ( 𝑚  ∈   Odd   →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  𝑚  ∈   GoldbachOddW  ) ) ) | 
						
							| 76 | 75 | com23 | ⊢ ( ( 7  <  𝑚  ∧  𝑚  ∈  ℤ )  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) | 
						
							| 77 | 76 | ex | ⊢ ( 7  <  𝑚  →  ( 𝑚  ∈  ℤ  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 78 |  | 7gbow | ⊢ 7  ∈   GoldbachOddW | 
						
							| 79 |  | eleq1 | ⊢ ( 7  =  𝑚  →  ( 7  ∈   GoldbachOddW   ↔  𝑚  ∈   GoldbachOddW  ) ) | 
						
							| 80 | 78 79 | mpbii | ⊢ ( 7  =  𝑚  →  𝑚  ∈   GoldbachOddW  ) | 
						
							| 81 | 80 | a1d | ⊢ ( 7  =  𝑚  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) | 
						
							| 82 | 81 | a1d | ⊢ ( 7  =  𝑚  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) | 
						
							| 83 | 82 | a1d | ⊢ ( 7  =  𝑚  →  ( 𝑚  ∈  ℤ  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 84 | 77 83 | jaoi | ⊢ ( ( 7  <  𝑚  ∨  7  =  𝑚 )  →  ( 𝑚  ∈  ℤ  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 85 | 84 | com12 | ⊢ ( 𝑚  ∈  ℤ  →  ( ( 7  <  𝑚  ∨  7  =  𝑚 )  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 86 | 22 85 | sylbid | ⊢ ( 𝑚  ∈  ℤ  →  ( ( 6  +  1 )  ≤  𝑚  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 87 | 16 86 | sylbid | ⊢ ( 𝑚  ∈  ℤ  →  ( 6  <  𝑚  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 88 | 87 | com12 | ⊢ ( 6  <  𝑚  →  ( 𝑚  ∈  ℤ  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 89 |  | eleq1 | ⊢ ( 6  =  𝑚  →  ( 6  ∈   Odd   ↔  𝑚  ∈   Odd  ) ) | 
						
							| 90 |  | 6even | ⊢ 6  ∈   Even | 
						
							| 91 |  | evennodd | ⊢ ( 6  ∈   Even   →  ¬  6  ∈   Odd  ) | 
						
							| 92 | 91 | pm2.21d | ⊢ ( 6  ∈   Even   →  ( 6  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) | 
						
							| 93 | 90 92 | ax-mp | ⊢ ( 6  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) | 
						
							| 94 | 89 93 | biimtrrdi | ⊢ ( 6  =  𝑚  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) | 
						
							| 95 | 94 | a1d | ⊢ ( 6  =  𝑚  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) | 
						
							| 96 | 95 | a1d | ⊢ ( 6  =  𝑚  →  ( 𝑚  ∈  ℤ  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 97 | 88 96 | jaoi | ⊢ ( ( 6  <  𝑚  ∨  6  =  𝑚 )  →  ( 𝑚  ∈  ℤ  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 98 | 97 | com12 | ⊢ ( 𝑚  ∈  ℤ  →  ( ( 6  <  𝑚  ∨  6  =  𝑚 )  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 99 | 12 98 | sylbid | ⊢ ( 𝑚  ∈  ℤ  →  ( ( 5  +  1 )  ≤  𝑚  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 100 | 5 99 | sylbid | ⊢ ( 𝑚  ∈  ℤ  →  ( 5  <  𝑚  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 101 | 100 | com24 | ⊢ ( 𝑚  ∈  ℤ  →  ( 𝑚  ∈   Odd   →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 5  <  𝑚  →  𝑚  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 102 | 1 101 | mpcom | ⊢ ( 𝑚  ∈   Odd   →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 5  <  𝑚  →  𝑚  ∈   GoldbachOddW  ) ) ) | 
						
							| 103 | 102 | impcom | ⊢ ( ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  ∧  𝑚  ∈   Odd  )  →  ( 5  <  𝑚  →  𝑚  ∈   GoldbachOddW  ) ) | 
						
							| 104 | 103 | ralrimiva | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∀ 𝑚  ∈   Odd  ( 5  <  𝑚  →  𝑚  ∈   GoldbachOddW  ) ) |