Metamath Proof Explorer


Theorem evennodd

Description: An even number is not an odd number. (Contributed by AV, 16-Jun-2020)

Ref Expression
Assertion evennodd ( 𝑍 ∈ Even → ¬ 𝑍 ∈ Odd )

Proof

Step Hyp Ref Expression
1 iseven ( 𝑍 ∈ Even ↔ ( 𝑍 ∈ ℤ ∧ ( 𝑍 / 2 ) ∈ ℤ ) )
2 zeo2 ( 𝑍 ∈ ℤ → ( ( 𝑍 / 2 ) ∈ ℤ ↔ ¬ ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ) )
3 2 biimpd ( 𝑍 ∈ ℤ → ( ( 𝑍 / 2 ) ∈ ℤ → ¬ ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ) )
4 3 imp ( ( 𝑍 ∈ ℤ ∧ ( 𝑍 / 2 ) ∈ ℤ ) → ¬ ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ )
5 1 4 sylbi ( 𝑍 ∈ Even → ¬ ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ )
6 5 olcd ( 𝑍 ∈ Even → ( ¬ 𝑍 ∈ ℤ ∨ ¬ ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ) )
7 isodd ( 𝑍 ∈ Odd ↔ ( 𝑍 ∈ ℤ ∧ ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ) )
8 7 notbii ( ¬ 𝑍 ∈ Odd ↔ ¬ ( 𝑍 ∈ ℤ ∧ ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ) )
9 ianor ( ¬ ( 𝑍 ∈ ℤ ∧ ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ) ↔ ( ¬ 𝑍 ∈ ℤ ∨ ¬ ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ) )
10 8 9 bitri ( ¬ 𝑍 ∈ Odd ↔ ( ¬ 𝑍 ∈ ℤ ∨ ¬ ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ) )
11 6 10 sylibr ( 𝑍 ∈ Even → ¬ 𝑍 ∈ Odd )