| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isodd | ⊢ ( 𝑍  ∈   Odd   ↔  ( 𝑍  ∈  ℤ  ∧  ( ( 𝑍  +  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 2 |  | zeo2 | ⊢ ( 𝑍  ∈  ℤ  →  ( ( 𝑍  /  2 )  ∈  ℤ  ↔  ¬  ( ( 𝑍  +  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 3 | 2 | biimpd | ⊢ ( 𝑍  ∈  ℤ  →  ( ( 𝑍  /  2 )  ∈  ℤ  →  ¬  ( ( 𝑍  +  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 4 | 3 | con2d | ⊢ ( 𝑍  ∈  ℤ  →  ( ( ( 𝑍  +  1 )  /  2 )  ∈  ℤ  →  ¬  ( 𝑍  /  2 )  ∈  ℤ ) ) | 
						
							| 5 | 4 | imp | ⊢ ( ( 𝑍  ∈  ℤ  ∧  ( ( 𝑍  +  1 )  /  2 )  ∈  ℤ )  →  ¬  ( 𝑍  /  2 )  ∈  ℤ ) | 
						
							| 6 | 1 5 | sylbi | ⊢ ( 𝑍  ∈   Odd   →  ¬  ( 𝑍  /  2 )  ∈  ℤ ) | 
						
							| 7 | 6 | olcd | ⊢ ( 𝑍  ∈   Odd   →  ( ¬  𝑍  ∈  ℤ  ∨  ¬  ( 𝑍  /  2 )  ∈  ℤ ) ) | 
						
							| 8 |  | ianor | ⊢ ( ¬  ( 𝑍  ∈  ℤ  ∧  ( 𝑍  /  2 )  ∈  ℤ )  ↔  ( ¬  𝑍  ∈  ℤ  ∨  ¬  ( 𝑍  /  2 )  ∈  ℤ ) ) | 
						
							| 9 |  | iseven | ⊢ ( 𝑍  ∈   Even   ↔  ( 𝑍  ∈  ℤ  ∧  ( 𝑍  /  2 )  ∈  ℤ ) ) | 
						
							| 10 | 8 9 | xchnxbir | ⊢ ( ¬  𝑍  ∈   Even   ↔  ( ¬  𝑍  ∈  ℤ  ∨  ¬  ( 𝑍  /  2 )  ∈  ℤ ) ) | 
						
							| 11 | 7 10 | sylibr | ⊢ ( 𝑍  ∈   Odd   →  ¬  𝑍  ∈   Even  ) |