| Step | Hyp | Ref | Expression | 
						
							| 1 |  | znegcl | ⊢ ( 𝐴  ∈  ℤ  →  - 𝐴  ∈  ℤ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴  /  2 )  ∈  ℤ )  →  - 𝐴  ∈  ℤ ) | 
						
							| 3 |  | znegcl | ⊢ ( ( 𝐴  /  2 )  ∈  ℤ  →  - ( 𝐴  /  2 )  ∈  ℤ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴  /  2 )  ∈  ℤ )  →  - ( 𝐴  /  2 )  ∈  ℤ ) | 
						
							| 5 |  | zcn | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ ) | 
						
							| 6 |  | 2cnd | ⊢ ( 𝐴  ∈  ℤ  →  2  ∈  ℂ ) | 
						
							| 7 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐴  ∈  ℤ  →  2  ≠  0 ) | 
						
							| 9 | 5 6 8 | 3jca | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴  /  2 )  ∈  ℤ )  →  ( 𝐴  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 11 |  | divneg | ⊢ ( ( 𝐴  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  - ( 𝐴  /  2 )  =  ( - 𝐴  /  2 ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( - ( 𝐴  /  2 )  ∈  ℤ  ↔  ( - 𝐴  /  2 )  ∈  ℤ ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴  /  2 )  ∈  ℤ )  →  ( - ( 𝐴  /  2 )  ∈  ℤ  ↔  ( - 𝐴  /  2 )  ∈  ℤ ) ) | 
						
							| 14 | 4 13 | mpbid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴  /  2 )  ∈  ℤ )  →  ( - 𝐴  /  2 )  ∈  ℤ ) | 
						
							| 15 | 2 14 | jca | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴  /  2 )  ∈  ℤ )  →  ( - 𝐴  ∈  ℤ  ∧  ( - 𝐴  /  2 )  ∈  ℤ ) ) | 
						
							| 16 |  | iseven | ⊢ ( 𝐴  ∈   Even   ↔  ( 𝐴  ∈  ℤ  ∧  ( 𝐴  /  2 )  ∈  ℤ ) ) | 
						
							| 17 |  | iseven | ⊢ ( - 𝐴  ∈   Even   ↔  ( - 𝐴  ∈  ℤ  ∧  ( - 𝐴  /  2 )  ∈  ℤ ) ) | 
						
							| 18 | 15 16 17 | 3imtr4i | ⊢ ( 𝐴  ∈   Even   →  - 𝐴  ∈   Even  ) |