Metamath Proof Explorer


Theorem evennodd

Description: An even number is not an odd number. (Contributed by AV, 16-Jun-2020)

Ref Expression
Assertion evennodd Z Even ¬ Z Odd

Proof

Step Hyp Ref Expression
1 iseven Z Even Z Z 2
2 zeo2 Z Z 2 ¬ Z + 1 2
3 2 biimpd Z Z 2 ¬ Z + 1 2
4 3 imp Z Z 2 ¬ Z + 1 2
5 1 4 sylbi Z Even ¬ Z + 1 2
6 5 olcd Z Even ¬ Z ¬ Z + 1 2
7 isodd Z Odd Z Z + 1 2
8 7 notbii ¬ Z Odd ¬ Z Z + 1 2
9 ianor ¬ Z Z + 1 2 ¬ Z ¬ Z + 1 2
10 8 9 bitri ¬ Z Odd ¬ Z ¬ Z + 1 2
11 6 10 sylibr Z Even ¬ Z Odd