| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  →  𝑚  ∈   Odd  ) | 
						
							| 2 |  | 3odd | ⊢ 3  ∈   Odd | 
						
							| 3 | 1 2 | jctir | ⊢ ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  →  ( 𝑚  ∈   Odd   ∧  3  ∈   Odd  ) ) | 
						
							| 4 |  | omoeALTV | ⊢ ( ( 𝑚  ∈   Odd   ∧  3  ∈   Odd  )  →  ( 𝑚  −  3 )  ∈   Even  ) | 
						
							| 5 |  | breq2 | ⊢ ( 𝑛  =  ( 𝑚  −  3 )  →  ( 4  <  𝑛  ↔  4  <  ( 𝑚  −  3 ) ) ) | 
						
							| 6 |  | eleq1 | ⊢ ( 𝑛  =  ( 𝑚  −  3 )  →  ( 𝑛  ∈   GoldbachEven   ↔  ( 𝑚  −  3 )  ∈   GoldbachEven  ) ) | 
						
							| 7 | 5 6 | imbi12d | ⊢ ( 𝑛  =  ( 𝑚  −  3 )  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  ↔  ( 4  <  ( 𝑚  −  3 )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  ) ) ) | 
						
							| 8 | 7 | rspcv | ⊢ ( ( 𝑚  −  3 )  ∈   Even   →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 4  <  ( 𝑚  −  3 )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  ) ) ) | 
						
							| 9 | 3 4 8 | 3syl | ⊢ ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 4  <  ( 𝑚  −  3 )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  ) ) ) | 
						
							| 10 |  | 4p3e7 | ⊢ ( 4  +  3 )  =  7 | 
						
							| 11 | 10 | breq1i | ⊢ ( ( 4  +  3 )  <  𝑚  ↔  7  <  𝑚 ) | 
						
							| 12 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑚  ∈   Odd   →  4  ∈  ℝ ) | 
						
							| 14 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑚  ∈   Odd   →  3  ∈  ℝ ) | 
						
							| 16 |  | oddz | ⊢ ( 𝑚  ∈   Odd   →  𝑚  ∈  ℤ ) | 
						
							| 17 | 16 | zred | ⊢ ( 𝑚  ∈   Odd   →  𝑚  ∈  ℝ ) | 
						
							| 18 | 13 15 17 | ltaddsubd | ⊢ ( 𝑚  ∈   Odd   →  ( ( 4  +  3 )  <  𝑚  ↔  4  <  ( 𝑚  −  3 ) ) ) | 
						
							| 19 | 18 | biimpd | ⊢ ( 𝑚  ∈   Odd   →  ( ( 4  +  3 )  <  𝑚  →  4  <  ( 𝑚  −  3 ) ) ) | 
						
							| 20 | 11 19 | biimtrrid | ⊢ ( 𝑚  ∈   Odd   →  ( 7  <  𝑚  →  4  <  ( 𝑚  −  3 ) ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  →  4  <  ( 𝑚  −  3 ) ) | 
						
							| 22 |  | pm2.27 | ⊢ ( 4  <  ( 𝑚  −  3 )  →  ( ( 4  <  ( 𝑚  −  3 )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  →  ( ( 4  <  ( 𝑚  −  3 )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  )  →  ( 𝑚  −  3 )  ∈   GoldbachEven  ) ) | 
						
							| 24 |  | isgbe | ⊢ ( ( 𝑚  −  3 )  ∈   GoldbachEven   ↔  ( ( 𝑚  −  3 )  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 25 |  | 3prm | ⊢ 3  ∈  ℙ | 
						
							| 26 | 25 | a1i | ⊢ ( ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) ) )  →  3  ∈  ℙ ) | 
						
							| 27 |  | eleq1 | ⊢ ( 𝑟  =  3  →  ( 𝑟  ∈   Odd   ↔  3  ∈   Odd  ) ) | 
						
							| 28 | 27 | 3anbi3d | ⊢ ( 𝑟  =  3  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ↔  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  3  ∈   Odd  ) ) ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑟  =  3  →  ( ( 𝑝  +  𝑞 )  +  𝑟 )  =  ( ( 𝑝  +  𝑞 )  +  3 ) ) | 
						
							| 30 | 29 | eqeq2d | ⊢ ( 𝑟  =  3  →  ( 𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  𝑚  =  ( ( 𝑝  +  𝑞 )  +  3 ) ) ) | 
						
							| 31 | 28 30 | anbi12d | ⊢ ( 𝑟  =  3  →  ( ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  ↔  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  3  ∈   Odd  )  ∧  𝑚  =  ( ( 𝑝  +  𝑞 )  +  3 ) ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) ) )  ∧  𝑟  =  3 )  →  ( ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  ↔  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  3  ∈   Odd  )  ∧  𝑚  =  ( ( 𝑝  +  𝑞 )  +  3 ) ) ) ) | 
						
							| 33 |  | simp1 | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  𝑝  ∈   Odd  ) | 
						
							| 34 |  | simp2 | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  𝑞  ∈   Odd  ) | 
						
							| 35 | 2 | a1i | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  3  ∈   Odd  ) | 
						
							| 36 | 33 34 35 | 3jca | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  3  ∈   Odd  ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) ) )  →  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  3  ∈   Odd  ) ) | 
						
							| 38 | 16 | zcnd | ⊢ ( 𝑚  ∈   Odd   →  𝑚  ∈  ℂ ) | 
						
							| 39 | 38 | ad3antrrr | ⊢ ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  𝑚  ∈  ℂ ) | 
						
							| 40 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 41 | 40 | a1i | ⊢ ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  3  ∈  ℂ ) | 
						
							| 42 |  | prmz | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℤ ) | 
						
							| 43 |  | prmz | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℤ ) | 
						
							| 44 |  | zaddcl | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( 𝑝  +  𝑞 )  ∈  ℤ ) | 
						
							| 45 | 42 43 44 | syl2an | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( 𝑝  +  𝑞 )  ∈  ℤ ) | 
						
							| 46 | 45 | zcnd | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( 𝑝  +  𝑞 )  ∈  ℂ ) | 
						
							| 47 | 46 | adantll | ⊢ ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( 𝑝  +  𝑞 )  ∈  ℂ ) | 
						
							| 48 | 39 41 47 | subadd2d | ⊢ ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 )  ↔  ( ( 𝑝  +  𝑞 )  +  3 )  =  𝑚 ) ) | 
						
							| 49 | 48 | biimpa | ⊢ ( ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  ( ( 𝑝  +  𝑞 )  +  3 )  =  𝑚 ) | 
						
							| 50 | 49 | eqcomd | ⊢ ( ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  𝑚  =  ( ( 𝑝  +  𝑞 )  +  3 ) ) | 
						
							| 51 | 50 | 3ad2antr3 | ⊢ ( ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) ) )  →  𝑚  =  ( ( 𝑝  +  𝑞 )  +  3 ) ) | 
						
							| 52 | 37 51 | jca | ⊢ ( ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) ) )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  3  ∈   Odd  )  ∧  𝑚  =  ( ( 𝑝  +  𝑞 )  +  3 ) ) ) | 
						
							| 53 | 26 32 52 | rspcedvd | ⊢ ( ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) ) )  →  ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 55 | 54 | reximdva | ⊢ ( ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  ∧  𝑝  ∈  ℙ )  →  ( ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 56 | 55 | reximdva | ⊢ ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 57 | 56 1 | jctild | ⊢ ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑚  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 58 |  | isgbo | ⊢ ( 𝑚  ∈   GoldbachOdd   ↔  ( 𝑚  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑚  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 59 | 57 58 | imbitrrdi | ⊢ ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) )  →  𝑚  ∈   GoldbachOdd  ) ) | 
						
							| 60 | 59 | adantld | ⊢ ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  →  ( ( ( 𝑚  −  3 )  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  ( 𝑚  −  3 )  =  ( 𝑝  +  𝑞 ) ) )  →  𝑚  ∈   GoldbachOdd  ) ) | 
						
							| 61 | 24 60 | biimtrid | ⊢ ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  →  ( ( 𝑚  −  3 )  ∈   GoldbachEven   →  𝑚  ∈   GoldbachOdd  ) ) | 
						
							| 62 | 9 23 61 | 3syld | ⊢ ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  →  ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  𝑚  ∈   GoldbachOdd  ) ) | 
						
							| 63 | 62 | com12 | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( ( 𝑚  ∈   Odd   ∧  7  <  𝑚 )  →  𝑚  ∈   GoldbachOdd  ) ) | 
						
							| 64 | 63 | expd | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑚  ∈   Odd   →  ( 7  <  𝑚  →  𝑚  ∈   GoldbachOdd  ) ) ) | 
						
							| 65 | 64 | ralrimiv | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∀ 𝑚  ∈   Odd  ( 7  <  𝑚  →  𝑚  ∈   GoldbachOdd  ) ) |