| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( m e. Odd /\ 7 < m ) -> m e. Odd ) | 
						
							| 2 |  | 3odd |  |-  3 e. Odd | 
						
							| 3 | 1 2 | jctir |  |-  ( ( m e. Odd /\ 7 < m ) -> ( m e. Odd /\ 3 e. Odd ) ) | 
						
							| 4 |  | omoeALTV |  |-  ( ( m e. Odd /\ 3 e. Odd ) -> ( m - 3 ) e. Even ) | 
						
							| 5 |  | breq2 |  |-  ( n = ( m - 3 ) -> ( 4 < n <-> 4 < ( m - 3 ) ) ) | 
						
							| 6 |  | eleq1 |  |-  ( n = ( m - 3 ) -> ( n e. GoldbachEven <-> ( m - 3 ) e. GoldbachEven ) ) | 
						
							| 7 | 5 6 | imbi12d |  |-  ( n = ( m - 3 ) -> ( ( 4 < n -> n e. GoldbachEven ) <-> ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) ) ) | 
						
							| 8 | 7 | rspcv |  |-  ( ( m - 3 ) e. Even -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) ) ) | 
						
							| 9 | 3 4 8 | 3syl |  |-  ( ( m e. Odd /\ 7 < m ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) ) ) | 
						
							| 10 |  | 4p3e7 |  |-  ( 4 + 3 ) = 7 | 
						
							| 11 | 10 | breq1i |  |-  ( ( 4 + 3 ) < m <-> 7 < m ) | 
						
							| 12 |  | 4re |  |-  4 e. RR | 
						
							| 13 | 12 | a1i |  |-  ( m e. Odd -> 4 e. RR ) | 
						
							| 14 |  | 3re |  |-  3 e. RR | 
						
							| 15 | 14 | a1i |  |-  ( m e. Odd -> 3 e. RR ) | 
						
							| 16 |  | oddz |  |-  ( m e. Odd -> m e. ZZ ) | 
						
							| 17 | 16 | zred |  |-  ( m e. Odd -> m e. RR ) | 
						
							| 18 | 13 15 17 | ltaddsubd |  |-  ( m e. Odd -> ( ( 4 + 3 ) < m <-> 4 < ( m - 3 ) ) ) | 
						
							| 19 | 18 | biimpd |  |-  ( m e. Odd -> ( ( 4 + 3 ) < m -> 4 < ( m - 3 ) ) ) | 
						
							| 20 | 11 19 | biimtrrid |  |-  ( m e. Odd -> ( 7 < m -> 4 < ( m - 3 ) ) ) | 
						
							| 21 | 20 | imp |  |-  ( ( m e. Odd /\ 7 < m ) -> 4 < ( m - 3 ) ) | 
						
							| 22 |  | pm2.27 |  |-  ( 4 < ( m - 3 ) -> ( ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) -> ( m - 3 ) e. GoldbachEven ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( m e. Odd /\ 7 < m ) -> ( ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) -> ( m - 3 ) e. GoldbachEven ) ) | 
						
							| 24 |  | isgbe |  |-  ( ( m - 3 ) e. GoldbachEven <-> ( ( m - 3 ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) ) | 
						
							| 25 |  | 3prm |  |-  3 e. Prime | 
						
							| 26 | 25 | a1i |  |-  ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> 3 e. Prime ) | 
						
							| 27 |  | eleq1 |  |-  ( r = 3 -> ( r e. Odd <-> 3 e. Odd ) ) | 
						
							| 28 | 27 | 3anbi3d |  |-  ( r = 3 -> ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) <-> ( p e. Odd /\ q e. Odd /\ 3 e. Odd ) ) ) | 
						
							| 29 |  | oveq2 |  |-  ( r = 3 -> ( ( p + q ) + r ) = ( ( p + q ) + 3 ) ) | 
						
							| 30 | 29 | eqeq2d |  |-  ( r = 3 -> ( m = ( ( p + q ) + r ) <-> m = ( ( p + q ) + 3 ) ) ) | 
						
							| 31 | 28 30 | anbi12d |  |-  ( r = 3 -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ 3 e. Odd ) /\ m = ( ( p + q ) + 3 ) ) ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) /\ r = 3 ) -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ 3 e. Odd ) /\ m = ( ( p + q ) + 3 ) ) ) ) | 
						
							| 33 |  | simp1 |  |-  ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> p e. Odd ) | 
						
							| 34 |  | simp2 |  |-  ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> q e. Odd ) | 
						
							| 35 | 2 | a1i |  |-  ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> 3 e. Odd ) | 
						
							| 36 | 33 34 35 | 3jca |  |-  ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> ( p e. Odd /\ q e. Odd /\ 3 e. Odd ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> ( p e. Odd /\ q e. Odd /\ 3 e. Odd ) ) | 
						
							| 38 | 16 | zcnd |  |-  ( m e. Odd -> m e. CC ) | 
						
							| 39 | 38 | ad3antrrr |  |-  ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) -> m e. CC ) | 
						
							| 40 |  | 3cn |  |-  3 e. CC | 
						
							| 41 | 40 | a1i |  |-  ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) -> 3 e. CC ) | 
						
							| 42 |  | prmz |  |-  ( p e. Prime -> p e. ZZ ) | 
						
							| 43 |  | prmz |  |-  ( q e. Prime -> q e. ZZ ) | 
						
							| 44 |  | zaddcl |  |-  ( ( p e. ZZ /\ q e. ZZ ) -> ( p + q ) e. ZZ ) | 
						
							| 45 | 42 43 44 | syl2an |  |-  ( ( p e. Prime /\ q e. Prime ) -> ( p + q ) e. ZZ ) | 
						
							| 46 | 45 | zcnd |  |-  ( ( p e. Prime /\ q e. Prime ) -> ( p + q ) e. CC ) | 
						
							| 47 | 46 | adantll |  |-  ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) -> ( p + q ) e. CC ) | 
						
							| 48 | 39 41 47 | subadd2d |  |-  ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( m - 3 ) = ( p + q ) <-> ( ( p + q ) + 3 ) = m ) ) | 
						
							| 49 | 48 | biimpa |  |-  ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( m - 3 ) = ( p + q ) ) -> ( ( p + q ) + 3 ) = m ) | 
						
							| 50 | 49 | eqcomd |  |-  ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( m - 3 ) = ( p + q ) ) -> m = ( ( p + q ) + 3 ) ) | 
						
							| 51 | 50 | 3ad2antr3 |  |-  ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> m = ( ( p + q ) + 3 ) ) | 
						
							| 52 | 37 51 | jca |  |-  ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> ( ( p e. Odd /\ q e. Odd /\ 3 e. Odd ) /\ m = ( ( p + q ) + 3 ) ) ) | 
						
							| 53 | 26 32 52 | rspcedvd |  |-  ( ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) ) | 
						
							| 54 | 53 | ex |  |-  ( ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) ) ) | 
						
							| 55 | 54 | reximdva |  |-  ( ( ( m e. Odd /\ 7 < m ) /\ p e. Prime ) -> ( E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) ) ) | 
						
							| 56 | 55 | reximdva |  |-  ( ( m e. Odd /\ 7 < m ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) ) ) | 
						
							| 57 | 56 1 | jctild |  |-  ( ( m e. Odd /\ 7 < m ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> ( m e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 58 |  | isgbo |  |-  ( m e. GoldbachOdd <-> ( m e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ m = ( ( p + q ) + r ) ) ) ) | 
						
							| 59 | 57 58 | imbitrrdi |  |-  ( ( m e. Odd /\ 7 < m ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> m e. GoldbachOdd ) ) | 
						
							| 60 | 59 | adantld |  |-  ( ( m e. Odd /\ 7 < m ) -> ( ( ( m - 3 ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> m e. GoldbachOdd ) ) | 
						
							| 61 | 24 60 | biimtrid |  |-  ( ( m e. Odd /\ 7 < m ) -> ( ( m - 3 ) e. GoldbachEven -> m e. GoldbachOdd ) ) | 
						
							| 62 | 9 23 61 | 3syld |  |-  ( ( m e. Odd /\ 7 < m ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> m e. GoldbachOdd ) ) | 
						
							| 63 | 62 | com12 |  |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( ( m e. Odd /\ 7 < m ) -> m e. GoldbachOdd ) ) | 
						
							| 64 | 63 | expd |  |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> ( 7 < m -> m e. GoldbachOdd ) ) ) | 
						
							| 65 | 64 | ralrimiv |  |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) ) |