| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmnn |  |-  ( Q e. Prime -> Q e. NN ) | 
						
							| 2 |  | nneoALTV |  |-  ( Q e. NN -> ( Q e. Even <-> -. Q e. Odd ) ) | 
						
							| 3 | 2 | bicomd |  |-  ( Q e. NN -> ( -. Q e. Odd <-> Q e. Even ) ) | 
						
							| 4 | 1 3 | syl |  |-  ( Q e. Prime -> ( -. Q e. Odd <-> Q e. Even ) ) | 
						
							| 5 |  | evenprm2 |  |-  ( Q e. Prime -> ( Q e. Even <-> Q = 2 ) ) | 
						
							| 6 | 4 5 | bitrd |  |-  ( Q e. Prime -> ( -. Q e. Odd <-> Q = 2 ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( -. Q e. Odd <-> Q = 2 ) ) | 
						
							| 8 |  | oveq2 |  |-  ( Q = 2 -> ( P + Q ) = ( P + 2 ) ) | 
						
							| 9 | 8 | eqeq2d |  |-  ( Q = 2 -> ( N = ( P + Q ) <-> N = ( P + 2 ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( P e. Prime /\ Q = 2 ) -> ( N = ( P + Q ) <-> N = ( P + 2 ) ) ) | 
						
							| 11 | 10 | 3anbi3d |  |-  ( ( P e. Prime /\ Q = 2 ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) <-> ( N e. Even /\ 4 < N /\ N = ( P + 2 ) ) ) ) | 
						
							| 12 |  | breq2 |  |-  ( N = ( P + 2 ) -> ( 4 < N <-> 4 < ( P + 2 ) ) ) | 
						
							| 13 |  | eleq1 |  |-  ( N = ( P + 2 ) -> ( N e. Even <-> ( P + 2 ) e. Even ) ) | 
						
							| 14 | 12 13 | anbi12d |  |-  ( N = ( P + 2 ) -> ( ( 4 < N /\ N e. Even ) <-> ( 4 < ( P + 2 ) /\ ( P + 2 ) e. Even ) ) ) | 
						
							| 15 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 16 |  | 2evenALTV |  |-  2 e. Even | 
						
							| 17 |  | evensumeven |  |-  ( ( P e. ZZ /\ 2 e. Even ) -> ( P e. Even <-> ( P + 2 ) e. Even ) ) | 
						
							| 18 | 15 16 17 | sylancl |  |-  ( P e. Prime -> ( P e. Even <-> ( P + 2 ) e. Even ) ) | 
						
							| 19 |  | evenprm2 |  |-  ( P e. Prime -> ( P e. Even <-> P = 2 ) ) | 
						
							| 20 |  | oveq1 |  |-  ( P = 2 -> ( P + 2 ) = ( 2 + 2 ) ) | 
						
							| 21 |  | 2p2e4 |  |-  ( 2 + 2 ) = 4 | 
						
							| 22 | 20 21 | eqtrdi |  |-  ( P = 2 -> ( P + 2 ) = 4 ) | 
						
							| 23 | 22 | breq2d |  |-  ( P = 2 -> ( 4 < ( P + 2 ) <-> 4 < 4 ) ) | 
						
							| 24 |  | 4re |  |-  4 e. RR | 
						
							| 25 | 24 | ltnri |  |-  -. 4 < 4 | 
						
							| 26 | 25 | pm2.21i |  |-  ( 4 < 4 -> Q e. Odd ) | 
						
							| 27 | 23 26 | biimtrdi |  |-  ( P = 2 -> ( 4 < ( P + 2 ) -> Q e. Odd ) ) | 
						
							| 28 | 19 27 | biimtrdi |  |-  ( P e. Prime -> ( P e. Even -> ( 4 < ( P + 2 ) -> Q e. Odd ) ) ) | 
						
							| 29 | 18 28 | sylbird |  |-  ( P e. Prime -> ( ( P + 2 ) e. Even -> ( 4 < ( P + 2 ) -> Q e. Odd ) ) ) | 
						
							| 30 | 29 | com13 |  |-  ( 4 < ( P + 2 ) -> ( ( P + 2 ) e. Even -> ( P e. Prime -> Q e. Odd ) ) ) | 
						
							| 31 | 30 | imp |  |-  ( ( 4 < ( P + 2 ) /\ ( P + 2 ) e. Even ) -> ( P e. Prime -> Q e. Odd ) ) | 
						
							| 32 | 14 31 | biimtrdi |  |-  ( N = ( P + 2 ) -> ( ( 4 < N /\ N e. Even ) -> ( P e. Prime -> Q e. Odd ) ) ) | 
						
							| 33 | 32 | expd |  |-  ( N = ( P + 2 ) -> ( 4 < N -> ( N e. Even -> ( P e. Prime -> Q e. Odd ) ) ) ) | 
						
							| 34 | 33 | com13 |  |-  ( N e. Even -> ( 4 < N -> ( N = ( P + 2 ) -> ( P e. Prime -> Q e. Odd ) ) ) ) | 
						
							| 35 | 34 | 3imp |  |-  ( ( N e. Even /\ 4 < N /\ N = ( P + 2 ) ) -> ( P e. Prime -> Q e. Odd ) ) | 
						
							| 36 | 35 | com12 |  |-  ( P e. Prime -> ( ( N e. Even /\ 4 < N /\ N = ( P + 2 ) ) -> Q e. Odd ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( P e. Prime /\ Q = 2 ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + 2 ) ) -> Q e. Odd ) ) | 
						
							| 38 | 11 37 | sylbid |  |-  ( ( P e. Prime /\ Q = 2 ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> Q e. Odd ) ) | 
						
							| 39 | 38 | ex |  |-  ( P e. Prime -> ( Q = 2 -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> Q e. Odd ) ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( Q = 2 -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> Q e. Odd ) ) ) | 
						
							| 41 | 7 40 | sylbid |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( -. Q e. Odd -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> Q e. Odd ) ) ) | 
						
							| 42 |  | ax-1 |  |-  ( Q e. Odd -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> Q e. Odd ) ) | 
						
							| 43 | 41 42 | pm2.61d2 |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> Q e. Odd ) ) |