| Step | Hyp | Ref | Expression | 
						
							| 1 |  | epee |  |-  ( ( A e. Even /\ B e. Even ) -> ( A + B ) e. Even ) | 
						
							| 2 | 1 | expcom |  |-  ( B e. Even -> ( A e. Even -> ( A + B ) e. Even ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( A e. ZZ /\ B e. Even ) -> ( A e. Even -> ( A + B ) e. Even ) ) | 
						
							| 4 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 5 |  | evenz |  |-  ( B e. Even -> B e. ZZ ) | 
						
							| 6 | 5 | zcnd |  |-  ( B e. Even -> B e. CC ) | 
						
							| 7 |  | pncan |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - B ) = A ) | 
						
							| 8 | 4 6 7 | syl2an |  |-  ( ( A e. ZZ /\ B e. Even ) -> ( ( A + B ) - B ) = A ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( A e. ZZ /\ B e. Even ) /\ ( A + B ) e. Even ) -> ( ( A + B ) - B ) = A ) | 
						
							| 10 |  | simpr |  |-  ( ( A e. ZZ /\ B e. Even ) -> B e. Even ) | 
						
							| 11 | 10 | anim1i |  |-  ( ( ( A e. ZZ /\ B e. Even ) /\ ( A + B ) e. Even ) -> ( B e. Even /\ ( A + B ) e. Even ) ) | 
						
							| 12 | 11 | ancomd |  |-  ( ( ( A e. ZZ /\ B e. Even ) /\ ( A + B ) e. Even ) -> ( ( A + B ) e. Even /\ B e. Even ) ) | 
						
							| 13 |  | emee |  |-  ( ( ( A + B ) e. Even /\ B e. Even ) -> ( ( A + B ) - B ) e. Even ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( ( A e. ZZ /\ B e. Even ) /\ ( A + B ) e. Even ) -> ( ( A + B ) - B ) e. Even ) | 
						
							| 15 | 9 14 | eqeltrrd |  |-  ( ( ( A e. ZZ /\ B e. Even ) /\ ( A + B ) e. Even ) -> A e. Even ) | 
						
							| 16 | 15 | ex |  |-  ( ( A e. ZZ /\ B e. Even ) -> ( ( A + B ) e. Even -> A e. Even ) ) | 
						
							| 17 | 3 16 | impbid |  |-  ( ( A e. ZZ /\ B e. Even ) -> ( A e. Even <-> ( A + B ) e. Even ) ) |