Metamath Proof Explorer


Theorem emee

Description: The difference of two even numbers is even. (Contributed by AV, 21-Jul-2020)

Ref Expression
Assertion emee
|- ( ( A e. Even /\ B e. Even ) -> ( A - B ) e. Even )

Proof

Step Hyp Ref Expression
1 evenz
 |-  ( A e. Even -> A e. ZZ )
2 1 zcnd
 |-  ( A e. Even -> A e. CC )
3 evenz
 |-  ( B e. Even -> B e. ZZ )
4 3 zcnd
 |-  ( B e. Even -> B e. CC )
5 negsub
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) )
6 2 4 5 syl2an
 |-  ( ( A e. Even /\ B e. Even ) -> ( A + -u B ) = ( A - B ) )
7 enege
 |-  ( B e. Even -> -u B e. Even )
8 epee
 |-  ( ( A e. Even /\ -u B e. Even ) -> ( A + -u B ) e. Even )
9 7 8 sylan2
 |-  ( ( A e. Even /\ B e. Even ) -> ( A + -u B ) e. Even )
10 6 9 eqeltrrd
 |-  ( ( A e. Even /\ B e. Even ) -> ( A - B ) e. Even )