| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evenz |  |-  ( A e. Even -> A e. ZZ ) | 
						
							| 2 | 1 | zcnd |  |-  ( A e. Even -> A e. CC ) | 
						
							| 3 |  | evenz |  |-  ( B e. Even -> B e. ZZ ) | 
						
							| 4 | 3 | zcnd |  |-  ( B e. Even -> B e. CC ) | 
						
							| 5 |  | negsub |  |-  ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) | 
						
							| 6 | 2 4 5 | syl2an |  |-  ( ( A e. Even /\ B e. Even ) -> ( A + -u B ) = ( A - B ) ) | 
						
							| 7 |  | enege |  |-  ( B e. Even -> -u B e. Even ) | 
						
							| 8 |  | epee |  |-  ( ( A e. Even /\ -u B e. Even ) -> ( A + -u B ) e. Even ) | 
						
							| 9 | 7 8 | sylan2 |  |-  ( ( A e. Even /\ B e. Even ) -> ( A + -u B ) e. Even ) | 
						
							| 10 | 6 9 | eqeltrrd |  |-  ( ( A e. Even /\ B e. Even ) -> ( A - B ) e. Even ) |