| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2a1 |  |-  ( P = 2 -> ( P e. Prime -> ( P e. Even -> P = 2 ) ) ) | 
						
							| 2 |  | df-ne |  |-  ( P =/= 2 <-> -. P = 2 ) | 
						
							| 3 | 2 | biimpri |  |-  ( -. P = 2 -> P =/= 2 ) | 
						
							| 4 | 3 | anim2i |  |-  ( ( P e. Prime /\ -. P = 2 ) -> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( -. P = 2 /\ P e. Prime ) -> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 6 |  | eldifsn |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 7 | 5 6 | sylibr |  |-  ( ( -. P = 2 /\ P e. Prime ) -> P e. ( Prime \ { 2 } ) ) | 
						
							| 8 |  | oddprmALTV |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Odd ) | 
						
							| 9 |  | oddneven |  |-  ( P e. Odd -> -. P e. Even ) | 
						
							| 10 | 9 | pm2.21d |  |-  ( P e. Odd -> ( P e. Even -> P = 2 ) ) | 
						
							| 11 | 7 8 10 | 3syl |  |-  ( ( -. P = 2 /\ P e. Prime ) -> ( P e. Even -> P = 2 ) ) | 
						
							| 12 | 11 | ex |  |-  ( -. P = 2 -> ( P e. Prime -> ( P e. Even -> P = 2 ) ) ) | 
						
							| 13 | 1 12 | pm2.61i |  |-  ( P e. Prime -> ( P e. Even -> P = 2 ) ) | 
						
							| 14 |  | 2evenALTV |  |-  2 e. Even | 
						
							| 15 |  | eleq1 |  |-  ( P = 2 -> ( P e. Even <-> 2 e. Even ) ) | 
						
							| 16 | 14 15 | mpbiri |  |-  ( P = 2 -> P e. Even ) | 
						
							| 17 | 13 16 | impbid1 |  |-  ( P e. Prime -> ( P e. Even <-> P = 2 ) ) |