| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2a1 | ⊢ ( 𝑃  =  2  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈   Even   →  𝑃  =  2 ) ) ) | 
						
							| 2 |  | df-ne | ⊢ ( 𝑃  ≠  2  ↔  ¬  𝑃  =  2 ) | 
						
							| 3 | 2 | biimpri | ⊢ ( ¬  𝑃  =  2  →  𝑃  ≠  2 ) | 
						
							| 4 | 3 | anim2i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  =  2 )  →  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( ¬  𝑃  =  2  ∧  𝑃  ∈  ℙ )  →  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 6 |  | eldifsn | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 7 | 5 6 | sylibr | ⊢ ( ( ¬  𝑃  =  2  ∧  𝑃  ∈  ℙ )  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 8 |  | oddprmALTV | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈   Odd  ) | 
						
							| 9 |  | oddneven | ⊢ ( 𝑃  ∈   Odd   →  ¬  𝑃  ∈   Even  ) | 
						
							| 10 | 9 | pm2.21d | ⊢ ( 𝑃  ∈   Odd   →  ( 𝑃  ∈   Even   →  𝑃  =  2 ) ) | 
						
							| 11 | 7 8 10 | 3syl | ⊢ ( ( ¬  𝑃  =  2  ∧  𝑃  ∈  ℙ )  →  ( 𝑃  ∈   Even   →  𝑃  =  2 ) ) | 
						
							| 12 | 11 | ex | ⊢ ( ¬  𝑃  =  2  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈   Even   →  𝑃  =  2 ) ) ) | 
						
							| 13 | 1 12 | pm2.61i | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈   Even   →  𝑃  =  2 ) ) | 
						
							| 14 |  | 2evenALTV | ⊢ 2  ∈   Even | 
						
							| 15 |  | eleq1 | ⊢ ( 𝑃  =  2  →  ( 𝑃  ∈   Even   ↔  2  ∈   Even  ) ) | 
						
							| 16 | 14 15 | mpbiri | ⊢ ( 𝑃  =  2  →  𝑃  ∈   Even  ) | 
						
							| 17 | 13 16 | impbid1 | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈   Even   ↔  𝑃  =  2 ) ) |