| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 2 | 1 | zcnd |  |-  ( P e. Prime -> P e. CC ) | 
						
							| 3 |  | prmz |  |-  ( Q e. Prime -> Q e. ZZ ) | 
						
							| 4 | 3 | zcnd |  |-  ( Q e. Prime -> Q e. CC ) | 
						
							| 5 |  | addcom |  |-  ( ( P e. CC /\ Q e. CC ) -> ( P + Q ) = ( Q + P ) ) | 
						
							| 6 | 2 4 5 | syl2anr |  |-  ( ( Q e. Prime /\ P e. Prime ) -> ( P + Q ) = ( Q + P ) ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( ( Q e. Prime /\ P e. Prime ) -> ( N = ( P + Q ) <-> N = ( Q + P ) ) ) | 
						
							| 8 | 7 | 3anbi3d |  |-  ( ( Q e. Prime /\ P e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) <-> ( N e. Even /\ 4 < N /\ N = ( Q + P ) ) ) ) | 
						
							| 9 |  | sbgoldbaltlem1 |  |-  ( ( Q e. Prime /\ P e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( Q + P ) ) -> P e. Odd ) ) | 
						
							| 10 | 8 9 | sylbid |  |-  ( ( Q e. Prime /\ P e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> P e. Odd ) ) | 
						
							| 11 | 10 | ancoms |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> P e. Odd ) ) | 
						
							| 12 |  | sbgoldbaltlem1 |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> Q e. Odd ) ) | 
						
							| 13 | 11 12 | jcad |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( ( N e. Even /\ 4 < N /\ N = ( P + Q ) ) -> ( P e. Odd /\ Q e. Odd ) ) ) |