| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 2 | 1 | zcnd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℂ ) | 
						
							| 3 |  | prmz | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℤ ) | 
						
							| 4 | 3 | zcnd | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℂ ) | 
						
							| 5 |  | addcom | ⊢ ( ( 𝑃  ∈  ℂ  ∧  𝑄  ∈  ℂ )  →  ( 𝑃  +  𝑄 )  =  ( 𝑄  +  𝑃 ) ) | 
						
							| 6 | 2 4 5 | syl2anr | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑃  ∈  ℙ )  →  ( 𝑃  +  𝑄 )  =  ( 𝑄  +  𝑃 ) ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑃  ∈  ℙ )  →  ( 𝑁  =  ( 𝑃  +  𝑄 )  ↔  𝑁  =  ( 𝑄  +  𝑃 ) ) ) | 
						
							| 8 | 7 | 3anbi3d | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑃  ∈  ℙ )  →  ( ( 𝑁  ∈   Even   ∧  4  <  𝑁  ∧  𝑁  =  ( 𝑃  +  𝑄 ) )  ↔  ( 𝑁  ∈   Even   ∧  4  <  𝑁  ∧  𝑁  =  ( 𝑄  +  𝑃 ) ) ) ) | 
						
							| 9 |  | sbgoldbaltlem1 | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑃  ∈  ℙ )  →  ( ( 𝑁  ∈   Even   ∧  4  <  𝑁  ∧  𝑁  =  ( 𝑄  +  𝑃 ) )  →  𝑃  ∈   Odd  ) ) | 
						
							| 10 | 8 9 | sylbid | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑃  ∈  ℙ )  →  ( ( 𝑁  ∈   Even   ∧  4  <  𝑁  ∧  𝑁  =  ( 𝑃  +  𝑄 ) )  →  𝑃  ∈   Odd  ) ) | 
						
							| 11 | 10 | ancoms | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( ( 𝑁  ∈   Even   ∧  4  <  𝑁  ∧  𝑁  =  ( 𝑃  +  𝑄 ) )  →  𝑃  ∈   Odd  ) ) | 
						
							| 12 |  | sbgoldbaltlem1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( ( 𝑁  ∈   Even   ∧  4  <  𝑁  ∧  𝑁  =  ( 𝑃  +  𝑄 ) )  →  𝑄  ∈   Odd  ) ) | 
						
							| 13 | 11 12 | jcad | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( ( 𝑁  ∈   Even   ∧  4  <  𝑁  ∧  𝑁  =  ( 𝑃  +  𝑄 ) )  →  ( 𝑃  ∈   Odd   ∧  𝑄  ∈   Odd  ) ) ) |