| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 2 |  | evenz | ⊢ ( 𝑛  ∈   Even   →  𝑛  ∈  ℤ ) | 
						
							| 3 |  | zltp1le | ⊢ ( ( 2  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( 2  <  𝑛  ↔  ( 2  +  1 )  ≤  𝑛 ) ) | 
						
							| 4 | 1 2 3 | sylancr | ⊢ ( 𝑛  ∈   Even   →  ( 2  <  𝑛  ↔  ( 2  +  1 )  ≤  𝑛 ) ) | 
						
							| 5 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 6 | 5 | breq1i | ⊢ ( ( 2  +  1 )  ≤  𝑛  ↔  3  ≤  𝑛 ) | 
						
							| 7 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑛  ∈   Even   →  3  ∈  ℝ ) | 
						
							| 9 | 2 | zred | ⊢ ( 𝑛  ∈   Even   →  𝑛  ∈  ℝ ) | 
						
							| 10 | 8 9 | leloed | ⊢ ( 𝑛  ∈   Even   →  ( 3  ≤  𝑛  ↔  ( 3  <  𝑛  ∨  3  =  𝑛 ) ) ) | 
						
							| 11 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 12 |  | zltp1le | ⊢ ( ( 3  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( 3  <  𝑛  ↔  ( 3  +  1 )  ≤  𝑛 ) ) | 
						
							| 13 | 11 2 12 | sylancr | ⊢ ( 𝑛  ∈   Even   →  ( 3  <  𝑛  ↔  ( 3  +  1 )  ≤  𝑛 ) ) | 
						
							| 14 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 15 | 14 | breq1i | ⊢ ( ( 3  +  1 )  ≤  𝑛  ↔  4  ≤  𝑛 ) | 
						
							| 16 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑛  ∈   Even   →  4  ∈  ℝ ) | 
						
							| 18 | 17 9 | leloed | ⊢ ( 𝑛  ∈   Even   →  ( 4  ≤  𝑛  ↔  ( 4  <  𝑛  ∨  4  =  𝑛 ) ) ) | 
						
							| 19 |  | pm3.35 | ⊢ ( ( 4  <  𝑛  ∧  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  ) )  →  𝑛  ∈   GoldbachEven  ) | 
						
							| 20 |  | isgbe | ⊢ ( 𝑛  ∈   GoldbachEven   ↔  ( 𝑛  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 21 |  | simp3 | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  →  𝑛  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( ( ( 𝑛  ∈   Even   ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  →  𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 23 | 22 | reximdva | ⊢ ( ( 𝑛  ∈   Even   ∧  𝑝  ∈  ℙ )  →  ( ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 24 | 23 | reximdva | ⊢ ( 𝑛  ∈   Even   →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( 𝑛  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 26 | 20 25 | sylbi | ⊢ ( 𝑛  ∈   GoldbachEven   →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 27 | 26 | a1d | ⊢ ( 𝑛  ∈   GoldbachEven   →  ( 𝑛  ∈   Even   →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 28 | 19 27 | syl | ⊢ ( ( 4  <  𝑛  ∧  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  ) )  →  ( 𝑛  ∈   Even   →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 29 | 28 | ex | ⊢ ( 4  <  𝑛  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 𝑛  ∈   Even   →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 30 | 29 | com23 | ⊢ ( 4  <  𝑛  →  ( 𝑛  ∈   Even   →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 31 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 32 |  | 2p2e4 | ⊢ ( 2  +  2 )  =  4 | 
						
							| 33 | 32 | eqcomi | ⊢ 4  =  ( 2  +  2 ) | 
						
							| 34 |  | rspceov | ⊢ ( ( 2  ∈  ℙ  ∧  2  ∈  ℙ  ∧  4  =  ( 2  +  2 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 4  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 35 | 31 31 33 34 | mp3an | ⊢ ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 4  =  ( 𝑝  +  𝑞 ) | 
						
							| 36 |  | eqeq1 | ⊢ ( 4  =  𝑛  →  ( 4  =  ( 𝑝  +  𝑞 )  ↔  𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 37 | 36 | 2rexbidv | ⊢ ( 4  =  𝑛  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 4  =  ( 𝑝  +  𝑞 )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 38 | 35 37 | mpbii | ⊢ ( 4  =  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 39 | 38 | a1d | ⊢ ( 4  =  𝑛  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 40 | 39 | a1d | ⊢ ( 4  =  𝑛  →  ( 𝑛  ∈   Even   →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 41 | 30 40 | jaoi | ⊢ ( ( 4  <  𝑛  ∨  4  =  𝑛 )  →  ( 𝑛  ∈   Even   →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 42 | 41 | com12 | ⊢ ( 𝑛  ∈   Even   →  ( ( 4  <  𝑛  ∨  4  =  𝑛 )  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 43 | 18 42 | sylbid | ⊢ ( 𝑛  ∈   Even   →  ( 4  ≤  𝑛  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 44 | 15 43 | biimtrid | ⊢ ( 𝑛  ∈   Even   →  ( ( 3  +  1 )  ≤  𝑛  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 45 | 13 44 | sylbid | ⊢ ( 𝑛  ∈   Even   →  ( 3  <  𝑛  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 46 | 45 | com12 | ⊢ ( 3  <  𝑛  →  ( 𝑛  ∈   Even   →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 47 |  | 3odd | ⊢ 3  ∈   Odd | 
						
							| 48 |  | eleq1 | ⊢ ( 3  =  𝑛  →  ( 3  ∈   Odd   ↔  𝑛  ∈   Odd  ) ) | 
						
							| 49 | 47 48 | mpbii | ⊢ ( 3  =  𝑛  →  𝑛  ∈   Odd  ) | 
						
							| 50 |  | oddneven | ⊢ ( 𝑛  ∈   Odd   →  ¬  𝑛  ∈   Even  ) | 
						
							| 51 | 49 50 | syl | ⊢ ( 3  =  𝑛  →  ¬  𝑛  ∈   Even  ) | 
						
							| 52 | 51 | pm2.21d | ⊢ ( 3  =  𝑛  →  ( 𝑛  ∈   Even   →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 53 | 46 52 | jaoi | ⊢ ( ( 3  <  𝑛  ∨  3  =  𝑛 )  →  ( 𝑛  ∈   Even   →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 54 | 53 | com12 | ⊢ ( 𝑛  ∈   Even   →  ( ( 3  <  𝑛  ∨  3  =  𝑛 )  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 55 | 10 54 | sylbid | ⊢ ( 𝑛  ∈   Even   →  ( 3  ≤  𝑛  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 56 | 6 55 | biimtrid | ⊢ ( 𝑛  ∈   Even   →  ( ( 2  +  1 )  ≤  𝑛  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 57 | 4 56 | sylbid | ⊢ ( 𝑛  ∈   Even   →  ( 2  <  𝑛  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 58 | 57 | com23 | ⊢ ( 𝑛  ∈   Even   →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 59 |  | 2lt4 | ⊢ 2  <  4 | 
						
							| 60 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 61 | 60 | a1i | ⊢ ( 𝑛  ∈   Even   →  2  ∈  ℝ ) | 
						
							| 62 |  | lttr | ⊢ ( ( 2  ∈  ℝ  ∧  4  ∈  ℝ  ∧  𝑛  ∈  ℝ )  →  ( ( 2  <  4  ∧  4  <  𝑛 )  →  2  <  𝑛 ) ) | 
						
							| 63 | 61 17 9 62 | syl3anc | ⊢ ( 𝑛  ∈   Even   →  ( ( 2  <  4  ∧  4  <  𝑛 )  →  2  <  𝑛 ) ) | 
						
							| 64 | 59 63 | mpani | ⊢ ( 𝑛  ∈   Even   →  ( 4  <  𝑛  →  2  <  𝑛 ) ) | 
						
							| 65 | 64 | imp | ⊢ ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  →  2  <  𝑛 ) | 
						
							| 66 |  | simpll | ⊢ ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) )  →  𝑛  ∈   Even  ) | 
						
							| 67 |  | simpr | ⊢ ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑝  ∈  ℙ )  →  𝑝  ∈  ℙ ) | 
						
							| 68 | 67 | anim1i | ⊢ ( ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ ) ) | 
						
							| 70 |  | simpll | ⊢ ( ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( 𝑛  ∈   Even   ∧  4  <  𝑛 ) ) | 
						
							| 71 | 70 | anim1i | ⊢ ( ( ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  →  ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 72 |  | df-3an | ⊢ ( ( 𝑛  ∈   Even   ∧  4  <  𝑛  ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  ↔  ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 73 | 71 72 | sylibr | ⊢ ( ( ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑛  ∈   Even   ∧  4  <  𝑛  ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 74 |  | sbgoldbaltlem2 | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑛  ∈   Even   ∧  4  <  𝑛  ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd  ) ) ) | 
						
							| 75 | 69 73 74 | sylc | ⊢ ( ( ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd  ) ) | 
						
							| 76 |  | simpr | ⊢ ( ( ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  →  𝑛  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 77 |  | df-3an | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  ↔  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd  )  ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 78 | 75 76 77 | sylanbrc | ⊢ ( ( ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  ∧  𝑛  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 79 | 78 | ex | ⊢ ( ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑝  ∈  ℙ )  ∧  𝑞  ∈  ℙ )  →  ( 𝑛  =  ( 𝑝  +  𝑞 )  →  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 80 | 79 | reximdva | ⊢ ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  𝑝  ∈  ℙ )  →  ( ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 )  →  ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 81 | 80 | reximdva | ⊢ ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 82 | 81 | imp | ⊢ ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 83 | 66 82 | jca | ⊢ ( ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑛  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 84 | 83 | ex | ⊢ ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 )  →  ( 𝑛  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) ) | 
						
							| 85 | 84 20 | imbitrrdi | ⊢ ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 )  →  𝑛  ∈   GoldbachEven  ) ) | 
						
							| 86 | 65 85 | embantd | ⊢ ( ( 𝑛  ∈   Even   ∧  4  <  𝑛 )  →  ( ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) )  →  𝑛  ∈   GoldbachEven  ) ) | 
						
							| 87 | 86 | ex | ⊢ ( 𝑛  ∈   Even   →  ( 4  <  𝑛  →  ( ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) )  →  𝑛  ∈   GoldbachEven  ) ) ) | 
						
							| 88 | 87 | com23 | ⊢ ( 𝑛  ∈   Even   →  ( ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) )  →  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  ) ) ) | 
						
							| 89 | 58 88 | impbid | ⊢ ( 𝑛  ∈   Even   →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  ↔  ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 90 | 89 | ralbiia | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  ↔  ∀ 𝑛  ∈   Even  ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) |