| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  |-  2 e. ZZ | 
						
							| 2 |  | evenz |  |-  ( n e. Even -> n e. ZZ ) | 
						
							| 3 |  | zltp1le |  |-  ( ( 2 e. ZZ /\ n e. ZZ ) -> ( 2 < n <-> ( 2 + 1 ) <_ n ) ) | 
						
							| 4 | 1 2 3 | sylancr |  |-  ( n e. Even -> ( 2 < n <-> ( 2 + 1 ) <_ n ) ) | 
						
							| 5 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 6 | 5 | breq1i |  |-  ( ( 2 + 1 ) <_ n <-> 3 <_ n ) | 
						
							| 7 |  | 3re |  |-  3 e. RR | 
						
							| 8 | 7 | a1i |  |-  ( n e. Even -> 3 e. RR ) | 
						
							| 9 | 2 | zred |  |-  ( n e. Even -> n e. RR ) | 
						
							| 10 | 8 9 | leloed |  |-  ( n e. Even -> ( 3 <_ n <-> ( 3 < n \/ 3 = n ) ) ) | 
						
							| 11 |  | 3z |  |-  3 e. ZZ | 
						
							| 12 |  | zltp1le |  |-  ( ( 3 e. ZZ /\ n e. ZZ ) -> ( 3 < n <-> ( 3 + 1 ) <_ n ) ) | 
						
							| 13 | 11 2 12 | sylancr |  |-  ( n e. Even -> ( 3 < n <-> ( 3 + 1 ) <_ n ) ) | 
						
							| 14 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 15 | 14 | breq1i |  |-  ( ( 3 + 1 ) <_ n <-> 4 <_ n ) | 
						
							| 16 |  | 4re |  |-  4 e. RR | 
						
							| 17 | 16 | a1i |  |-  ( n e. Even -> 4 e. RR ) | 
						
							| 18 | 17 9 | leloed |  |-  ( n e. Even -> ( 4 <_ n <-> ( 4 < n \/ 4 = n ) ) ) | 
						
							| 19 |  | pm3.35 |  |-  ( ( 4 < n /\ ( 4 < n -> n e. GoldbachEven ) ) -> n e. GoldbachEven ) | 
						
							| 20 |  | isgbe |  |-  ( n e. GoldbachEven <-> ( n e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) ) ) | 
						
							| 21 |  | simp3 |  |-  ( ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) -> n = ( p + q ) ) | 
						
							| 22 | 21 | a1i |  |-  ( ( ( n e. Even /\ p e. Prime ) /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) -> n = ( p + q ) ) ) | 
						
							| 23 | 22 | reximdva |  |-  ( ( n e. Even /\ p e. Prime ) -> ( E. q e. Prime ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) -> E. q e. Prime n = ( p + q ) ) ) | 
						
							| 24 | 23 | reximdva |  |-  ( n e. Even -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( n e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) | 
						
							| 26 | 20 25 | sylbi |  |-  ( n e. GoldbachEven -> E. p e. Prime E. q e. Prime n = ( p + q ) ) | 
						
							| 27 | 26 | a1d |  |-  ( n e. GoldbachEven -> ( n e. Even -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) | 
						
							| 28 | 19 27 | syl |  |-  ( ( 4 < n /\ ( 4 < n -> n e. GoldbachEven ) ) -> ( n e. Even -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) | 
						
							| 29 | 28 | ex |  |-  ( 4 < n -> ( ( 4 < n -> n e. GoldbachEven ) -> ( n e. Even -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 30 | 29 | com23 |  |-  ( 4 < n -> ( n e. Even -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 31 |  | 2prm |  |-  2 e. Prime | 
						
							| 32 |  | 2p2e4 |  |-  ( 2 + 2 ) = 4 | 
						
							| 33 | 32 | eqcomi |  |-  4 = ( 2 + 2 ) | 
						
							| 34 |  | rspceov |  |-  ( ( 2 e. Prime /\ 2 e. Prime /\ 4 = ( 2 + 2 ) ) -> E. p e. Prime E. q e. Prime 4 = ( p + q ) ) | 
						
							| 35 | 31 31 33 34 | mp3an |  |-  E. p e. Prime E. q e. Prime 4 = ( p + q ) | 
						
							| 36 |  | eqeq1 |  |-  ( 4 = n -> ( 4 = ( p + q ) <-> n = ( p + q ) ) ) | 
						
							| 37 | 36 | 2rexbidv |  |-  ( 4 = n -> ( E. p e. Prime E. q e. Prime 4 = ( p + q ) <-> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) | 
						
							| 38 | 35 37 | mpbii |  |-  ( 4 = n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) | 
						
							| 39 | 38 | a1d |  |-  ( 4 = n -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) | 
						
							| 40 | 39 | a1d |  |-  ( 4 = n -> ( n e. Even -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 41 | 30 40 | jaoi |  |-  ( ( 4 < n \/ 4 = n ) -> ( n e. Even -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 42 | 41 | com12 |  |-  ( n e. Even -> ( ( 4 < n \/ 4 = n ) -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 43 | 18 42 | sylbid |  |-  ( n e. Even -> ( 4 <_ n -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 44 | 15 43 | biimtrid |  |-  ( n e. Even -> ( ( 3 + 1 ) <_ n -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 45 | 13 44 | sylbid |  |-  ( n e. Even -> ( 3 < n -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 46 | 45 | com12 |  |-  ( 3 < n -> ( n e. Even -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 47 |  | 3odd |  |-  3 e. Odd | 
						
							| 48 |  | eleq1 |  |-  ( 3 = n -> ( 3 e. Odd <-> n e. Odd ) ) | 
						
							| 49 | 47 48 | mpbii |  |-  ( 3 = n -> n e. Odd ) | 
						
							| 50 |  | oddneven |  |-  ( n e. Odd -> -. n e. Even ) | 
						
							| 51 | 49 50 | syl |  |-  ( 3 = n -> -. n e. Even ) | 
						
							| 52 | 51 | pm2.21d |  |-  ( 3 = n -> ( n e. Even -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 53 | 46 52 | jaoi |  |-  ( ( 3 < n \/ 3 = n ) -> ( n e. Even -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 54 | 53 | com12 |  |-  ( n e. Even -> ( ( 3 < n \/ 3 = n ) -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 55 | 10 54 | sylbid |  |-  ( n e. Even -> ( 3 <_ n -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 56 | 6 55 | biimtrid |  |-  ( n e. Even -> ( ( 2 + 1 ) <_ n -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 57 | 4 56 | sylbid |  |-  ( n e. Even -> ( 2 < n -> ( ( 4 < n -> n e. GoldbachEven ) -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 58 | 57 | com23 |  |-  ( n e. Even -> ( ( 4 < n -> n e. GoldbachEven ) -> ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 59 |  | 2lt4 |  |-  2 < 4 | 
						
							| 60 |  | 2re |  |-  2 e. RR | 
						
							| 61 | 60 | a1i |  |-  ( n e. Even -> 2 e. RR ) | 
						
							| 62 |  | lttr |  |-  ( ( 2 e. RR /\ 4 e. RR /\ n e. RR ) -> ( ( 2 < 4 /\ 4 < n ) -> 2 < n ) ) | 
						
							| 63 | 61 17 9 62 | syl3anc |  |-  ( n e. Even -> ( ( 2 < 4 /\ 4 < n ) -> 2 < n ) ) | 
						
							| 64 | 59 63 | mpani |  |-  ( n e. Even -> ( 4 < n -> 2 < n ) ) | 
						
							| 65 | 64 | imp |  |-  ( ( n e. Even /\ 4 < n ) -> 2 < n ) | 
						
							| 66 |  | simpll |  |-  ( ( ( n e. Even /\ 4 < n ) /\ E. p e. Prime E. q e. Prime n = ( p + q ) ) -> n e. Even ) | 
						
							| 67 |  | simpr |  |-  ( ( ( n e. Even /\ 4 < n ) /\ p e. Prime ) -> p e. Prime ) | 
						
							| 68 | 67 | anim1i |  |-  ( ( ( ( n e. Even /\ 4 < n ) /\ p e. Prime ) /\ q e. Prime ) -> ( p e. Prime /\ q e. Prime ) ) | 
						
							| 69 | 68 | adantr |  |-  ( ( ( ( ( n e. Even /\ 4 < n ) /\ p e. Prime ) /\ q e. Prime ) /\ n = ( p + q ) ) -> ( p e. Prime /\ q e. Prime ) ) | 
						
							| 70 |  | simpll |  |-  ( ( ( ( n e. Even /\ 4 < n ) /\ p e. Prime ) /\ q e. Prime ) -> ( n e. Even /\ 4 < n ) ) | 
						
							| 71 | 70 | anim1i |  |-  ( ( ( ( ( n e. Even /\ 4 < n ) /\ p e. Prime ) /\ q e. Prime ) /\ n = ( p + q ) ) -> ( ( n e. Even /\ 4 < n ) /\ n = ( p + q ) ) ) | 
						
							| 72 |  | df-3an |  |-  ( ( n e. Even /\ 4 < n /\ n = ( p + q ) ) <-> ( ( n e. Even /\ 4 < n ) /\ n = ( p + q ) ) ) | 
						
							| 73 | 71 72 | sylibr |  |-  ( ( ( ( ( n e. Even /\ 4 < n ) /\ p e. Prime ) /\ q e. Prime ) /\ n = ( p + q ) ) -> ( n e. Even /\ 4 < n /\ n = ( p + q ) ) ) | 
						
							| 74 |  | sbgoldbaltlem2 |  |-  ( ( p e. Prime /\ q e. Prime ) -> ( ( n e. Even /\ 4 < n /\ n = ( p + q ) ) -> ( p e. Odd /\ q e. Odd ) ) ) | 
						
							| 75 | 69 73 74 | sylc |  |-  ( ( ( ( ( n e. Even /\ 4 < n ) /\ p e. Prime ) /\ q e. Prime ) /\ n = ( p + q ) ) -> ( p e. Odd /\ q e. Odd ) ) | 
						
							| 76 |  | simpr |  |-  ( ( ( ( ( n e. Even /\ 4 < n ) /\ p e. Prime ) /\ q e. Prime ) /\ n = ( p + q ) ) -> n = ( p + q ) ) | 
						
							| 77 |  | df-3an |  |-  ( ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) <-> ( ( p e. Odd /\ q e. Odd ) /\ n = ( p + q ) ) ) | 
						
							| 78 | 75 76 77 | sylanbrc |  |-  ( ( ( ( ( n e. Even /\ 4 < n ) /\ p e. Prime ) /\ q e. Prime ) /\ n = ( p + q ) ) -> ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) ) | 
						
							| 79 | 78 | ex |  |-  ( ( ( ( n e. Even /\ 4 < n ) /\ p e. Prime ) /\ q e. Prime ) -> ( n = ( p + q ) -> ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) ) ) | 
						
							| 80 | 79 | reximdva |  |-  ( ( ( n e. Even /\ 4 < n ) /\ p e. Prime ) -> ( E. q e. Prime n = ( p + q ) -> E. q e. Prime ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) ) ) | 
						
							| 81 | 80 | reximdva |  |-  ( ( n e. Even /\ 4 < n ) -> ( E. p e. Prime E. q e. Prime n = ( p + q ) -> E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) ) ) | 
						
							| 82 | 81 | imp |  |-  ( ( ( n e. Even /\ 4 < n ) /\ E. p e. Prime E. q e. Prime n = ( p + q ) ) -> E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) ) | 
						
							| 83 | 66 82 | jca |  |-  ( ( ( n e. Even /\ 4 < n ) /\ E. p e. Prime E. q e. Prime n = ( p + q ) ) -> ( n e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) ) ) | 
						
							| 84 | 83 | ex |  |-  ( ( n e. Even /\ 4 < n ) -> ( E. p e. Prime E. q e. Prime n = ( p + q ) -> ( n e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ n = ( p + q ) ) ) ) ) | 
						
							| 85 | 84 20 | imbitrrdi |  |-  ( ( n e. Even /\ 4 < n ) -> ( E. p e. Prime E. q e. Prime n = ( p + q ) -> n e. GoldbachEven ) ) | 
						
							| 86 | 65 85 | embantd |  |-  ( ( n e. Even /\ 4 < n ) -> ( ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> n e. GoldbachEven ) ) | 
						
							| 87 | 86 | ex |  |-  ( n e. Even -> ( 4 < n -> ( ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> n e. GoldbachEven ) ) ) | 
						
							| 88 | 87 | com23 |  |-  ( n e. Even -> ( ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> ( 4 < n -> n e. GoldbachEven ) ) ) | 
						
							| 89 | 58 88 | impbid |  |-  ( n e. Even -> ( ( 4 < n -> n e. GoldbachEven ) <-> ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) ) | 
						
							| 90 | 89 | ralbiia |  |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) <-> A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) |