| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz |  |-  ( m e. Odd -> m e. ZZ ) | 
						
							| 2 |  | 5nn |  |-  5 e. NN | 
						
							| 3 | 2 | nnzi |  |-  5 e. ZZ | 
						
							| 4 |  | zltp1le |  |-  ( ( 5 e. ZZ /\ m e. ZZ ) -> ( 5 < m <-> ( 5 + 1 ) <_ m ) ) | 
						
							| 5 | 3 4 | mpan |  |-  ( m e. ZZ -> ( 5 < m <-> ( 5 + 1 ) <_ m ) ) | 
						
							| 6 |  | 5p1e6 |  |-  ( 5 + 1 ) = 6 | 
						
							| 7 | 6 | breq1i |  |-  ( ( 5 + 1 ) <_ m <-> 6 <_ m ) | 
						
							| 8 |  | 6re |  |-  6 e. RR | 
						
							| 9 | 8 | a1i |  |-  ( m e. ZZ -> 6 e. RR ) | 
						
							| 10 |  | zre |  |-  ( m e. ZZ -> m e. RR ) | 
						
							| 11 | 9 10 | leloed |  |-  ( m e. ZZ -> ( 6 <_ m <-> ( 6 < m \/ 6 = m ) ) ) | 
						
							| 12 | 7 11 | bitrid |  |-  ( m e. ZZ -> ( ( 5 + 1 ) <_ m <-> ( 6 < m \/ 6 = m ) ) ) | 
						
							| 13 |  | 6nn |  |-  6 e. NN | 
						
							| 14 | 13 | nnzi |  |-  6 e. ZZ | 
						
							| 15 |  | zltp1le |  |-  ( ( 6 e. ZZ /\ m e. ZZ ) -> ( 6 < m <-> ( 6 + 1 ) <_ m ) ) | 
						
							| 16 | 14 15 | mpan |  |-  ( m e. ZZ -> ( 6 < m <-> ( 6 + 1 ) <_ m ) ) | 
						
							| 17 |  | 6p1e7 |  |-  ( 6 + 1 ) = 7 | 
						
							| 18 | 17 | breq1i |  |-  ( ( 6 + 1 ) <_ m <-> 7 <_ m ) | 
						
							| 19 |  | 7re |  |-  7 e. RR | 
						
							| 20 | 19 | a1i |  |-  ( m e. ZZ -> 7 e. RR ) | 
						
							| 21 | 20 10 | leloed |  |-  ( m e. ZZ -> ( 7 <_ m <-> ( 7 < m \/ 7 = m ) ) ) | 
						
							| 22 | 18 21 | bitrid |  |-  ( m e. ZZ -> ( ( 6 + 1 ) <_ m <-> ( 7 < m \/ 7 = m ) ) ) | 
						
							| 23 |  | simpr |  |-  ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> m e. Odd ) | 
						
							| 24 |  | 3odd |  |-  3 e. Odd | 
						
							| 25 | 23 24 | jctir |  |-  ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( m e. Odd /\ 3 e. Odd ) ) | 
						
							| 26 |  | omoeALTV |  |-  ( ( m e. Odd /\ 3 e. Odd ) -> ( m - 3 ) e. Even ) | 
						
							| 27 |  | breq2 |  |-  ( n = ( m - 3 ) -> ( 4 < n <-> 4 < ( m - 3 ) ) ) | 
						
							| 28 |  | eleq1 |  |-  ( n = ( m - 3 ) -> ( n e. GoldbachEven <-> ( m - 3 ) e. GoldbachEven ) ) | 
						
							| 29 | 27 28 | imbi12d |  |-  ( n = ( m - 3 ) -> ( ( 4 < n -> n e. GoldbachEven ) <-> ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) ) ) | 
						
							| 30 | 29 | rspcv |  |-  ( ( m - 3 ) e. Even -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) ) ) | 
						
							| 31 | 25 26 30 | 3syl |  |-  ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) ) ) | 
						
							| 32 |  | 4p3e7 |  |-  ( 4 + 3 ) = 7 | 
						
							| 33 | 32 | eqcomi |  |-  7 = ( 4 + 3 ) | 
						
							| 34 | 33 | breq1i |  |-  ( 7 < m <-> ( 4 + 3 ) < m ) | 
						
							| 35 |  | 4re |  |-  4 e. RR | 
						
							| 36 | 35 | a1i |  |-  ( m e. ZZ -> 4 e. RR ) | 
						
							| 37 |  | 3re |  |-  3 e. RR | 
						
							| 38 | 37 | a1i |  |-  ( m e. ZZ -> 3 e. RR ) | 
						
							| 39 |  | ltaddsub |  |-  ( ( 4 e. RR /\ 3 e. RR /\ m e. RR ) -> ( ( 4 + 3 ) < m <-> 4 < ( m - 3 ) ) ) | 
						
							| 40 | 39 | biimpd |  |-  ( ( 4 e. RR /\ 3 e. RR /\ m e. RR ) -> ( ( 4 + 3 ) < m -> 4 < ( m - 3 ) ) ) | 
						
							| 41 | 36 38 10 40 | syl3anc |  |-  ( m e. ZZ -> ( ( 4 + 3 ) < m -> 4 < ( m - 3 ) ) ) | 
						
							| 42 | 34 41 | biimtrid |  |-  ( m e. ZZ -> ( 7 < m -> 4 < ( m - 3 ) ) ) | 
						
							| 43 | 42 | impcom |  |-  ( ( 7 < m /\ m e. ZZ ) -> 4 < ( m - 3 ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> 4 < ( m - 3 ) ) | 
						
							| 45 |  | pm2.27 |  |-  ( 4 < ( m - 3 ) -> ( ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) -> ( m - 3 ) e. GoldbachEven ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( ( 4 < ( m - 3 ) -> ( m - 3 ) e. GoldbachEven ) -> ( m - 3 ) e. GoldbachEven ) ) | 
						
							| 47 |  | isgbe |  |-  ( ( m - 3 ) e. GoldbachEven <-> ( ( m - 3 ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) ) | 
						
							| 48 |  | 3prm |  |-  3 e. Prime | 
						
							| 49 | 48 | a1i |  |-  ( m e. ZZ -> 3 e. Prime ) | 
						
							| 50 |  | zcn |  |-  ( m e. ZZ -> m e. CC ) | 
						
							| 51 |  | 3cn |  |-  3 e. CC | 
						
							| 52 | 50 51 | jctir |  |-  ( m e. ZZ -> ( m e. CC /\ 3 e. CC ) ) | 
						
							| 53 |  | npcan |  |-  ( ( m e. CC /\ 3 e. CC ) -> ( ( m - 3 ) + 3 ) = m ) | 
						
							| 54 | 53 | eqcomd |  |-  ( ( m e. CC /\ 3 e. CC ) -> m = ( ( m - 3 ) + 3 ) ) | 
						
							| 55 | 52 54 | syl |  |-  ( m e. ZZ -> m = ( ( m - 3 ) + 3 ) ) | 
						
							| 56 |  | oveq2 |  |-  ( 3 = r -> ( ( m - 3 ) + 3 ) = ( ( m - 3 ) + r ) ) | 
						
							| 57 | 56 | eqcoms |  |-  ( r = 3 -> ( ( m - 3 ) + 3 ) = ( ( m - 3 ) + r ) ) | 
						
							| 58 | 55 57 | sylan9eq |  |-  ( ( m e. ZZ /\ r = 3 ) -> m = ( ( m - 3 ) + r ) ) | 
						
							| 59 | 49 58 | rspcedeq2vd |  |-  ( m e. ZZ -> E. r e. Prime m = ( ( m - 3 ) + r ) ) | 
						
							| 60 |  | oveq1 |  |-  ( ( m - 3 ) = ( p + q ) -> ( ( m - 3 ) + r ) = ( ( p + q ) + r ) ) | 
						
							| 61 | 60 | eqeq2d |  |-  ( ( m - 3 ) = ( p + q ) -> ( m = ( ( m - 3 ) + r ) <-> m = ( ( p + q ) + r ) ) ) | 
						
							| 62 | 61 | rexbidv |  |-  ( ( m - 3 ) = ( p + q ) -> ( E. r e. Prime m = ( ( m - 3 ) + r ) <-> E. r e. Prime m = ( ( p + q ) + r ) ) ) | 
						
							| 63 | 59 62 | imbitrid |  |-  ( ( m - 3 ) = ( p + q ) -> ( m e. ZZ -> E. r e. Prime m = ( ( p + q ) + r ) ) ) | 
						
							| 64 | 63 | 3ad2ant3 |  |-  ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> ( m e. ZZ -> E. r e. Prime m = ( ( p + q ) + r ) ) ) | 
						
							| 65 | 64 | com12 |  |-  ( m e. ZZ -> ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. r e. Prime m = ( ( p + q ) + r ) ) ) | 
						
							| 66 | 65 | ad4antlr |  |-  ( ( ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. r e. Prime m = ( ( p + q ) + r ) ) ) | 
						
							| 67 | 66 | reximdva |  |-  ( ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) /\ p e. Prime ) -> ( E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. q e. Prime E. r e. Prime m = ( ( p + q ) + r ) ) ) | 
						
							| 68 | 67 | reximdva |  |-  ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime m = ( ( p + q ) + r ) ) ) | 
						
							| 69 | 68 23 | jctild |  |-  ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> ( m e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime m = ( ( p + q ) + r ) ) ) ) | 
						
							| 70 |  | isgbow |  |-  ( m e. GoldbachOddW <-> ( m e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime m = ( ( p + q ) + r ) ) ) | 
						
							| 71 | 69 70 | imbitrrdi |  |-  ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) -> m e. GoldbachOddW ) ) | 
						
							| 72 | 71 | adantld |  |-  ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( ( ( m - 3 ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( m - 3 ) = ( p + q ) ) ) -> m e. GoldbachOddW ) ) | 
						
							| 73 | 47 72 | biimtrid |  |-  ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( ( m - 3 ) e. GoldbachEven -> m e. GoldbachOddW ) ) | 
						
							| 74 | 31 46 73 | 3syld |  |-  ( ( ( 7 < m /\ m e. ZZ ) /\ m e. Odd ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> m e. GoldbachOddW ) ) | 
						
							| 75 | 74 | ex |  |-  ( ( 7 < m /\ m e. ZZ ) -> ( m e. Odd -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> m e. GoldbachOddW ) ) ) | 
						
							| 76 | 75 | com23 |  |-  ( ( 7 < m /\ m e. ZZ ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) | 
						
							| 77 | 76 | ex |  |-  ( 7 < m -> ( m e. ZZ -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) | 
						
							| 78 |  | 7gbow |  |-  7 e. GoldbachOddW | 
						
							| 79 |  | eleq1 |  |-  ( 7 = m -> ( 7 e. GoldbachOddW <-> m e. GoldbachOddW ) ) | 
						
							| 80 | 78 79 | mpbii |  |-  ( 7 = m -> m e. GoldbachOddW ) | 
						
							| 81 | 80 | a1d |  |-  ( 7 = m -> ( m e. Odd -> m e. GoldbachOddW ) ) | 
						
							| 82 | 81 | a1d |  |-  ( 7 = m -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) | 
						
							| 83 | 82 | a1d |  |-  ( 7 = m -> ( m e. ZZ -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) | 
						
							| 84 | 77 83 | jaoi |  |-  ( ( 7 < m \/ 7 = m ) -> ( m e. ZZ -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) | 
						
							| 85 | 84 | com12 |  |-  ( m e. ZZ -> ( ( 7 < m \/ 7 = m ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) | 
						
							| 86 | 22 85 | sylbid |  |-  ( m e. ZZ -> ( ( 6 + 1 ) <_ m -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) | 
						
							| 87 | 16 86 | sylbid |  |-  ( m e. ZZ -> ( 6 < m -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) | 
						
							| 88 | 87 | com12 |  |-  ( 6 < m -> ( m e. ZZ -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) | 
						
							| 89 |  | eleq1 |  |-  ( 6 = m -> ( 6 e. Odd <-> m e. Odd ) ) | 
						
							| 90 |  | 6even |  |-  6 e. Even | 
						
							| 91 |  | evennodd |  |-  ( 6 e. Even -> -. 6 e. Odd ) | 
						
							| 92 | 91 | pm2.21d |  |-  ( 6 e. Even -> ( 6 e. Odd -> m e. GoldbachOddW ) ) | 
						
							| 93 | 90 92 | ax-mp |  |-  ( 6 e. Odd -> m e. GoldbachOddW ) | 
						
							| 94 | 89 93 | biimtrrdi |  |-  ( 6 = m -> ( m e. Odd -> m e. GoldbachOddW ) ) | 
						
							| 95 | 94 | a1d |  |-  ( 6 = m -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) | 
						
							| 96 | 95 | a1d |  |-  ( 6 = m -> ( m e. ZZ -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) | 
						
							| 97 | 88 96 | jaoi |  |-  ( ( 6 < m \/ 6 = m ) -> ( m e. ZZ -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) | 
						
							| 98 | 97 | com12 |  |-  ( m e. ZZ -> ( ( 6 < m \/ 6 = m ) -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) | 
						
							| 99 | 12 98 | sylbid |  |-  ( m e. ZZ -> ( ( 5 + 1 ) <_ m -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) | 
						
							| 100 | 5 99 | sylbid |  |-  ( m e. ZZ -> ( 5 < m -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( m e. Odd -> m e. GoldbachOddW ) ) ) ) | 
						
							| 101 | 100 | com24 |  |-  ( m e. ZZ -> ( m e. Odd -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( 5 < m -> m e. GoldbachOddW ) ) ) ) | 
						
							| 102 | 1 101 | mpcom |  |-  ( m e. Odd -> ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( 5 < m -> m e. GoldbachOddW ) ) ) | 
						
							| 103 | 102 | impcom |  |-  ( ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) /\ m e. Odd ) -> ( 5 < m -> m e. GoldbachOddW ) ) | 
						
							| 104 | 103 | ralrimiva |  |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> A. m e. Odd ( 5 < m -> m e. GoldbachOddW ) ) |