| Step |
Hyp |
Ref |
Expression |
| 1 |
|
7odd |
|- 7 e. Odd |
| 2 |
|
2prm |
|- 2 e. Prime |
| 3 |
|
3prm |
|- 3 e. Prime |
| 4 |
|
gbpart7 |
|- 7 = ( ( 2 + 2 ) + 3 ) |
| 5 |
|
oveq2 |
|- ( r = 3 -> ( ( 2 + 2 ) + r ) = ( ( 2 + 2 ) + 3 ) ) |
| 6 |
5
|
rspceeqv |
|- ( ( 3 e. Prime /\ 7 = ( ( 2 + 2 ) + 3 ) ) -> E. r e. Prime 7 = ( ( 2 + 2 ) + r ) ) |
| 7 |
3 4 6
|
mp2an |
|- E. r e. Prime 7 = ( ( 2 + 2 ) + r ) |
| 8 |
|
oveq1 |
|- ( p = 2 -> ( p + q ) = ( 2 + q ) ) |
| 9 |
8
|
oveq1d |
|- ( p = 2 -> ( ( p + q ) + r ) = ( ( 2 + q ) + r ) ) |
| 10 |
9
|
eqeq2d |
|- ( p = 2 -> ( 7 = ( ( p + q ) + r ) <-> 7 = ( ( 2 + q ) + r ) ) ) |
| 11 |
10
|
rexbidv |
|- ( p = 2 -> ( E. r e. Prime 7 = ( ( p + q ) + r ) <-> E. r e. Prime 7 = ( ( 2 + q ) + r ) ) ) |
| 12 |
|
oveq2 |
|- ( q = 2 -> ( 2 + q ) = ( 2 + 2 ) ) |
| 13 |
12
|
oveq1d |
|- ( q = 2 -> ( ( 2 + q ) + r ) = ( ( 2 + 2 ) + r ) ) |
| 14 |
13
|
eqeq2d |
|- ( q = 2 -> ( 7 = ( ( 2 + q ) + r ) <-> 7 = ( ( 2 + 2 ) + r ) ) ) |
| 15 |
14
|
rexbidv |
|- ( q = 2 -> ( E. r e. Prime 7 = ( ( 2 + q ) + r ) <-> E. r e. Prime 7 = ( ( 2 + 2 ) + r ) ) ) |
| 16 |
11 15
|
rspc2ev |
|- ( ( 2 e. Prime /\ 2 e. Prime /\ E. r e. Prime 7 = ( ( 2 + 2 ) + r ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime 7 = ( ( p + q ) + r ) ) |
| 17 |
2 2 7 16
|
mp3an |
|- E. p e. Prime E. q e. Prime E. r e. Prime 7 = ( ( p + q ) + r ) |
| 18 |
|
isgbow |
|- ( 7 e. GoldbachOddW <-> ( 7 e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime 7 = ( ( p + q ) + r ) ) ) |
| 19 |
1 17 18
|
mpbir2an |
|- 7 e. GoldbachOddW |