| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 7odd |  |-  7 e. Odd | 
						
							| 2 |  | 2prm |  |-  2 e. Prime | 
						
							| 3 |  | 3prm |  |-  3 e. Prime | 
						
							| 4 |  | gbpart7 |  |-  7 = ( ( 2 + 2 ) + 3 ) | 
						
							| 5 |  | oveq2 |  |-  ( r = 3 -> ( ( 2 + 2 ) + r ) = ( ( 2 + 2 ) + 3 ) ) | 
						
							| 6 | 5 | rspceeqv |  |-  ( ( 3 e. Prime /\ 7 = ( ( 2 + 2 ) + 3 ) ) -> E. r e. Prime 7 = ( ( 2 + 2 ) + r ) ) | 
						
							| 7 | 3 4 6 | mp2an |  |-  E. r e. Prime 7 = ( ( 2 + 2 ) + r ) | 
						
							| 8 |  | oveq1 |  |-  ( p = 2 -> ( p + q ) = ( 2 + q ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( p = 2 -> ( ( p + q ) + r ) = ( ( 2 + q ) + r ) ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( p = 2 -> ( 7 = ( ( p + q ) + r ) <-> 7 = ( ( 2 + q ) + r ) ) ) | 
						
							| 11 | 10 | rexbidv |  |-  ( p = 2 -> ( E. r e. Prime 7 = ( ( p + q ) + r ) <-> E. r e. Prime 7 = ( ( 2 + q ) + r ) ) ) | 
						
							| 12 |  | oveq2 |  |-  ( q = 2 -> ( 2 + q ) = ( 2 + 2 ) ) | 
						
							| 13 | 12 | oveq1d |  |-  ( q = 2 -> ( ( 2 + q ) + r ) = ( ( 2 + 2 ) + r ) ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( q = 2 -> ( 7 = ( ( 2 + q ) + r ) <-> 7 = ( ( 2 + 2 ) + r ) ) ) | 
						
							| 15 | 14 | rexbidv |  |-  ( q = 2 -> ( E. r e. Prime 7 = ( ( 2 + q ) + r ) <-> E. r e. Prime 7 = ( ( 2 + 2 ) + r ) ) ) | 
						
							| 16 | 11 15 | rspc2ev |  |-  ( ( 2 e. Prime /\ 2 e. Prime /\ E. r e. Prime 7 = ( ( 2 + 2 ) + r ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime 7 = ( ( p + q ) + r ) ) | 
						
							| 17 | 2 2 7 16 | mp3an |  |-  E. p e. Prime E. q e. Prime E. r e. Prime 7 = ( ( p + q ) + r ) | 
						
							| 18 |  | isgbow |  |-  ( 7 e. GoldbachOddW <-> ( 7 e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime 7 = ( ( p + q ) + r ) ) ) | 
						
							| 19 | 1 17 18 | mpbir2an |  |-  7 e. GoldbachOddW |