| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 8even |  |-  8 e. Even | 
						
							| 2 |  | 5prm |  |-  5 e. Prime | 
						
							| 3 |  | 3prm |  |-  3 e. Prime | 
						
							| 4 |  | 5odd |  |-  5 e. Odd | 
						
							| 5 |  | 3odd |  |-  3 e. Odd | 
						
							| 6 |  | 5p3e8 |  |-  ( 5 + 3 ) = 8 | 
						
							| 7 | 6 | eqcomi |  |-  8 = ( 5 + 3 ) | 
						
							| 8 | 4 5 7 | 3pm3.2i |  |-  ( 5 e. Odd /\ 3 e. Odd /\ 8 = ( 5 + 3 ) ) | 
						
							| 9 |  | eleq1 |  |-  ( p = 5 -> ( p e. Odd <-> 5 e. Odd ) ) | 
						
							| 10 |  | biidd |  |-  ( p = 5 -> ( q e. Odd <-> q e. Odd ) ) | 
						
							| 11 |  | oveq1 |  |-  ( p = 5 -> ( p + q ) = ( 5 + q ) ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( p = 5 -> ( 8 = ( p + q ) <-> 8 = ( 5 + q ) ) ) | 
						
							| 13 | 9 10 12 | 3anbi123d |  |-  ( p = 5 -> ( ( p e. Odd /\ q e. Odd /\ 8 = ( p + q ) ) <-> ( 5 e. Odd /\ q e. Odd /\ 8 = ( 5 + q ) ) ) ) | 
						
							| 14 |  | biidd |  |-  ( q = 3 -> ( 5 e. Odd <-> 5 e. Odd ) ) | 
						
							| 15 |  | eleq1 |  |-  ( q = 3 -> ( q e. Odd <-> 3 e. Odd ) ) | 
						
							| 16 |  | oveq2 |  |-  ( q = 3 -> ( 5 + q ) = ( 5 + 3 ) ) | 
						
							| 17 | 16 | eqeq2d |  |-  ( q = 3 -> ( 8 = ( 5 + q ) <-> 8 = ( 5 + 3 ) ) ) | 
						
							| 18 | 14 15 17 | 3anbi123d |  |-  ( q = 3 -> ( ( 5 e. Odd /\ q e. Odd /\ 8 = ( 5 + q ) ) <-> ( 5 e. Odd /\ 3 e. Odd /\ 8 = ( 5 + 3 ) ) ) ) | 
						
							| 19 | 13 18 | rspc2ev |  |-  ( ( 5 e. Prime /\ 3 e. Prime /\ ( 5 e. Odd /\ 3 e. Odd /\ 8 = ( 5 + 3 ) ) ) -> E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 8 = ( p + q ) ) ) | 
						
							| 20 | 2 3 8 19 | mp3an |  |-  E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 8 = ( p + q ) ) | 
						
							| 21 |  | isgbe |  |-  ( 8 e. GoldbachEven <-> ( 8 e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 8 = ( p + q ) ) ) ) | 
						
							| 22 | 1 20 21 | mpbir2an |  |-  8 e. GoldbachEven |