| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 8even | ⊢ 8  ∈   Even | 
						
							| 2 |  | 5prm | ⊢ 5  ∈  ℙ | 
						
							| 3 |  | 3prm | ⊢ 3  ∈  ℙ | 
						
							| 4 |  | 5odd | ⊢ 5  ∈   Odd | 
						
							| 5 |  | 3odd | ⊢ 3  ∈   Odd | 
						
							| 6 |  | 5p3e8 | ⊢ ( 5  +  3 )  =  8 | 
						
							| 7 | 6 | eqcomi | ⊢ 8  =  ( 5  +  3 ) | 
						
							| 8 | 4 5 7 | 3pm3.2i | ⊢ ( 5  ∈   Odd   ∧  3  ∈   Odd   ∧  8  =  ( 5  +  3 ) ) | 
						
							| 9 |  | eleq1 | ⊢ ( 𝑝  =  5  →  ( 𝑝  ∈   Odd   ↔  5  ∈   Odd  ) ) | 
						
							| 10 |  | biidd | ⊢ ( 𝑝  =  5  →  ( 𝑞  ∈   Odd   ↔  𝑞  ∈   Odd  ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑝  =  5  →  ( 𝑝  +  𝑞 )  =  ( 5  +  𝑞 ) ) | 
						
							| 12 | 11 | eqeq2d | ⊢ ( 𝑝  =  5  →  ( 8  =  ( 𝑝  +  𝑞 )  ↔  8  =  ( 5  +  𝑞 ) ) ) | 
						
							| 13 | 9 10 12 | 3anbi123d | ⊢ ( 𝑝  =  5  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  8  =  ( 𝑝  +  𝑞 ) )  ↔  ( 5  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  8  =  ( 5  +  𝑞 ) ) ) ) | 
						
							| 14 |  | biidd | ⊢ ( 𝑞  =  3  →  ( 5  ∈   Odd   ↔  5  ∈   Odd  ) ) | 
						
							| 15 |  | eleq1 | ⊢ ( 𝑞  =  3  →  ( 𝑞  ∈   Odd   ↔  3  ∈   Odd  ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑞  =  3  →  ( 5  +  𝑞 )  =  ( 5  +  3 ) ) | 
						
							| 17 | 16 | eqeq2d | ⊢ ( 𝑞  =  3  →  ( 8  =  ( 5  +  𝑞 )  ↔  8  =  ( 5  +  3 ) ) ) | 
						
							| 18 | 14 15 17 | 3anbi123d | ⊢ ( 𝑞  =  3  →  ( ( 5  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  8  =  ( 5  +  𝑞 ) )  ↔  ( 5  ∈   Odd   ∧  3  ∈   Odd   ∧  8  =  ( 5  +  3 ) ) ) ) | 
						
							| 19 | 13 18 | rspc2ev | ⊢ ( ( 5  ∈  ℙ  ∧  3  ∈  ℙ  ∧  ( 5  ∈   Odd   ∧  3  ∈   Odd   ∧  8  =  ( 5  +  3 ) ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  8  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 20 | 2 3 8 19 | mp3an | ⊢ ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  8  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 21 |  | isgbe | ⊢ ( 8  ∈   GoldbachEven   ↔  ( 8  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  8  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 22 | 1 20 21 | mpbir2an | ⊢ 8  ∈   GoldbachEven |