| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 7odd | ⊢ 7  ∈   Odd | 
						
							| 2 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 3 |  | 3prm | ⊢ 3  ∈  ℙ | 
						
							| 4 |  | gbpart7 | ⊢ 7  =  ( ( 2  +  2 )  +  3 ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑟  =  3  →  ( ( 2  +  2 )  +  𝑟 )  =  ( ( 2  +  2 )  +  3 ) ) | 
						
							| 6 | 5 | rspceeqv | ⊢ ( ( 3  ∈  ℙ  ∧  7  =  ( ( 2  +  2 )  +  3 ) )  →  ∃ 𝑟  ∈  ℙ 7  =  ( ( 2  +  2 )  +  𝑟 ) ) | 
						
							| 7 | 3 4 6 | mp2an | ⊢ ∃ 𝑟  ∈  ℙ 7  =  ( ( 2  +  2 )  +  𝑟 ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑝  =  2  →  ( 𝑝  +  𝑞 )  =  ( 2  +  𝑞 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑝  =  2  →  ( ( 𝑝  +  𝑞 )  +  𝑟 )  =  ( ( 2  +  𝑞 )  +  𝑟 ) ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( 𝑝  =  2  →  ( 7  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  7  =  ( ( 2  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 11 | 10 | rexbidv | ⊢ ( 𝑝  =  2  →  ( ∃ 𝑟  ∈  ℙ 7  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  ℙ 7  =  ( ( 2  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑞  =  2  →  ( 2  +  𝑞 )  =  ( 2  +  2 ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝑞  =  2  →  ( ( 2  +  𝑞 )  +  𝑟 )  =  ( ( 2  +  2 )  +  𝑟 ) ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( 𝑞  =  2  →  ( 7  =  ( ( 2  +  𝑞 )  +  𝑟 )  ↔  7  =  ( ( 2  +  2 )  +  𝑟 ) ) ) | 
						
							| 15 | 14 | rexbidv | ⊢ ( 𝑞  =  2  →  ( ∃ 𝑟  ∈  ℙ 7  =  ( ( 2  +  𝑞 )  +  𝑟 )  ↔  ∃ 𝑟  ∈  ℙ 7  =  ( ( 2  +  2 )  +  𝑟 ) ) ) | 
						
							| 16 | 11 15 | rspc2ev | ⊢ ( ( 2  ∈  ℙ  ∧  2  ∈  ℙ  ∧  ∃ 𝑟  ∈  ℙ 7  =  ( ( 2  +  2 )  +  𝑟 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 7  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 17 | 2 2 7 16 | mp3an | ⊢ ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 7  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) | 
						
							| 18 |  | isgbow | ⊢ ( 7  ∈   GoldbachOddW   ↔  ( 7  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 7  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 19 | 1 17 18 | mpbir2an | ⊢ 7  ∈   GoldbachOddW |