| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbgoldbb | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∀ 𝑛  ∈   Even  ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 2 |  | 2p2e4 | ⊢ ( 2  +  2 )  =  4 | 
						
							| 3 |  | evenz | ⊢ ( 𝑁  ∈   Even   →  𝑁  ∈  ℤ ) | 
						
							| 4 | 3 | zred | ⊢ ( 𝑁  ∈   Even   →  𝑁  ∈  ℝ ) | 
						
							| 5 |  | 4lt6 | ⊢ 4  <  6 | 
						
							| 6 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 7 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 8 |  | ltletr | ⊢ ( ( 4  ∈  ℝ  ∧  6  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 4  <  6  ∧  6  ≤  𝑁 )  →  4  <  𝑁 ) ) | 
						
							| 9 | 6 7 8 | mp3an12 | ⊢ ( 𝑁  ∈  ℝ  →  ( ( 4  <  6  ∧  6  ≤  𝑁 )  →  4  <  𝑁 ) ) | 
						
							| 10 | 5 9 | mpani | ⊢ ( 𝑁  ∈  ℝ  →  ( 6  ≤  𝑁  →  4  <  𝑁 ) ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝑁  ∈   Even   →  ( 6  ≤  𝑁  →  4  <  𝑁 ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( 𝑁  ∈   Even   ∧  6  ≤  𝑁 )  →  4  <  𝑁 ) | 
						
							| 13 | 2 12 | eqbrtrid | ⊢ ( ( 𝑁  ∈   Even   ∧  6  ≤  𝑁 )  →  ( 2  +  2 )  <  𝑁 ) | 
						
							| 14 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝑁  ∈   Even   ∧  6  ≤  𝑁 )  →  2  ∈  ℝ ) | 
						
							| 16 | 4 | adantr | ⊢ ( ( 𝑁  ∈   Even   ∧  6  ≤  𝑁 )  →  𝑁  ∈  ℝ ) | 
						
							| 17 | 15 15 16 | ltaddsub2d | ⊢ ( ( 𝑁  ∈   Even   ∧  6  ≤  𝑁 )  →  ( ( 2  +  2 )  <  𝑁  ↔  2  <  ( 𝑁  −  2 ) ) ) | 
						
							| 18 | 13 17 | mpbid | ⊢ ( ( 𝑁  ∈   Even   ∧  6  ≤  𝑁 )  →  2  <  ( 𝑁  −  2 ) ) | 
						
							| 19 |  | 2evenALTV | ⊢ 2  ∈   Even | 
						
							| 20 |  | emee | ⊢ ( ( 𝑁  ∈   Even   ∧  2  ∈   Even  )  →  ( 𝑁  −  2 )  ∈   Even  ) | 
						
							| 21 | 19 20 | mpan2 | ⊢ ( 𝑁  ∈   Even   →  ( 𝑁  −  2 )  ∈   Even  ) | 
						
							| 22 |  | breq2 | ⊢ ( 𝑛  =  ( 𝑁  −  2 )  →  ( 2  <  𝑛  ↔  2  <  ( 𝑁  −  2 ) ) ) | 
						
							| 23 |  | eqeq1 | ⊢ ( 𝑛  =  ( 𝑁  −  2 )  →  ( 𝑛  =  ( 𝑝  +  𝑞 )  ↔  ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 24 | 23 | 2rexbidv | ⊢ ( 𝑛  =  ( 𝑁  −  2 )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 25 | 22 24 | imbi12d | ⊢ ( 𝑛  =  ( 𝑁  −  2 )  →  ( ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) )  ↔  ( 2  <  ( 𝑁  −  2 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 26 | 25 | rspcv | ⊢ ( ( 𝑁  −  2 )  ∈   Even   →  ( ∀ 𝑛  ∈   Even  ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) )  →  ( 2  <  ( 𝑁  −  2 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 27 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) )  →  2  ∈  ℙ ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑟  =  2  →  ( ( 𝑝  +  𝑞 )  +  𝑟 )  =  ( ( 𝑝  +  𝑞 )  +  2 ) ) | 
						
							| 30 | 29 | eqeq2d | ⊢ ( 𝑟  =  2  →  ( 𝑁  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  𝑁  =  ( ( 𝑝  +  𝑞 )  +  2 ) ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ( 𝑁  ∈   Even   ∧  ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) )  ∧  𝑟  =  2 )  →  ( 𝑁  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  𝑁  =  ( ( 𝑝  +  𝑞 )  +  2 ) ) ) | 
						
							| 32 | 3 | zcnd | ⊢ ( 𝑁  ∈   Even   →  𝑁  ∈  ℂ ) | 
						
							| 33 |  | 2cnd | ⊢ ( 𝑁  ∈   Even   →  2  ∈  ℂ ) | 
						
							| 34 |  | npcan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( ( 𝑁  −  2 )  +  2 )  =  𝑁 ) | 
						
							| 35 | 34 | eqcomd | ⊢ ( ( 𝑁  ∈  ℂ  ∧  2  ∈  ℂ )  →  𝑁  =  ( ( 𝑁  −  2 )  +  2 ) ) | 
						
							| 36 | 32 33 35 | syl2anc | ⊢ ( 𝑁  ∈   Even   →  𝑁  =  ( ( 𝑁  −  2 )  +  2 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) )  →  𝑁  =  ( ( 𝑁  −  2 )  +  2 ) ) | 
						
							| 38 |  | simpr | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) )  →  ( ( 𝑁  −  2 )  +  2 )  =  ( ( 𝑝  +  𝑞 )  +  2 ) ) | 
						
							| 40 | 37 39 | eqtrd | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) )  →  𝑁  =  ( ( 𝑝  +  𝑞 )  +  2 ) ) | 
						
							| 41 | 28 31 40 | rspcedvd | ⊢ ( ( 𝑁  ∈   Even   ∧  ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑟  ∈  ℙ 𝑁  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) | 
						
							| 42 | 41 | ex | ⊢ ( 𝑁  ∈   Even   →  ( ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 )  →  ∃ 𝑟  ∈  ℙ 𝑁  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 43 | 42 | reximdv | ⊢ ( 𝑁  ∈   Even   →  ( ∃ 𝑞  ∈  ℙ ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 )  →  ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑁  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 44 | 43 | reximdv | ⊢ ( 𝑁  ∈   Even   →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑁  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 45 | 44 | imim2d | ⊢ ( 𝑁  ∈   Even   →  ( ( 2  <  ( 𝑁  −  2 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑁  −  2 )  =  ( 𝑝  +  𝑞 ) )  →  ( 2  <  ( 𝑁  −  2 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑁  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 46 | 26 45 | syl9r | ⊢ ( 𝑁  ∈   Even   →  ( ( 𝑁  −  2 )  ∈   Even   →  ( ∀ 𝑛  ∈   Even  ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) )  →  ( 2  <  ( 𝑁  −  2 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑁  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) ) | 
						
							| 47 | 21 46 | mpd | ⊢ ( 𝑁  ∈   Even   →  ( ∀ 𝑛  ∈   Even  ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) )  →  ( 2  <  ( 𝑁  −  2 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑁  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝑁  ∈   Even   ∧  6  ≤  𝑁 )  →  ( ∀ 𝑛  ∈   Even  ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) )  →  ( 2  <  ( 𝑁  −  2 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑁  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) ) | 
						
							| 49 | 18 48 | mpid | ⊢ ( ( 𝑁  ∈   Even   ∧  6  ≤  𝑁 )  →  ( ∀ 𝑛  ∈   Even  ( 2  <  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ 𝑛  =  ( 𝑝  +  𝑞 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑁  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 50 | 1 49 | syl5com | ⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ( ( 𝑁  ∈   Even   ∧  6  ≤  𝑁 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑁  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) |