| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbgoldbb |  |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) | 
						
							| 2 |  | 2p2e4 |  |-  ( 2 + 2 ) = 4 | 
						
							| 3 |  | evenz |  |-  ( N e. Even -> N e. ZZ ) | 
						
							| 4 | 3 | zred |  |-  ( N e. Even -> N e. RR ) | 
						
							| 5 |  | 4lt6 |  |-  4 < 6 | 
						
							| 6 |  | 4re |  |-  4 e. RR | 
						
							| 7 |  | 6re |  |-  6 e. RR | 
						
							| 8 |  | ltletr |  |-  ( ( 4 e. RR /\ 6 e. RR /\ N e. RR ) -> ( ( 4 < 6 /\ 6 <_ N ) -> 4 < N ) ) | 
						
							| 9 | 6 7 8 | mp3an12 |  |-  ( N e. RR -> ( ( 4 < 6 /\ 6 <_ N ) -> 4 < N ) ) | 
						
							| 10 | 5 9 | mpani |  |-  ( N e. RR -> ( 6 <_ N -> 4 < N ) ) | 
						
							| 11 | 4 10 | syl |  |-  ( N e. Even -> ( 6 <_ N -> 4 < N ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( N e. Even /\ 6 <_ N ) -> 4 < N ) | 
						
							| 13 | 2 12 | eqbrtrid |  |-  ( ( N e. Even /\ 6 <_ N ) -> ( 2 + 2 ) < N ) | 
						
							| 14 |  | 2re |  |-  2 e. RR | 
						
							| 15 | 14 | a1i |  |-  ( ( N e. Even /\ 6 <_ N ) -> 2 e. RR ) | 
						
							| 16 | 4 | adantr |  |-  ( ( N e. Even /\ 6 <_ N ) -> N e. RR ) | 
						
							| 17 | 15 15 16 | ltaddsub2d |  |-  ( ( N e. Even /\ 6 <_ N ) -> ( ( 2 + 2 ) < N <-> 2 < ( N - 2 ) ) ) | 
						
							| 18 | 13 17 | mpbid |  |-  ( ( N e. Even /\ 6 <_ N ) -> 2 < ( N - 2 ) ) | 
						
							| 19 |  | 2evenALTV |  |-  2 e. Even | 
						
							| 20 |  | emee |  |-  ( ( N e. Even /\ 2 e. Even ) -> ( N - 2 ) e. Even ) | 
						
							| 21 | 19 20 | mpan2 |  |-  ( N e. Even -> ( N - 2 ) e. Even ) | 
						
							| 22 |  | breq2 |  |-  ( n = ( N - 2 ) -> ( 2 < n <-> 2 < ( N - 2 ) ) ) | 
						
							| 23 |  | eqeq1 |  |-  ( n = ( N - 2 ) -> ( n = ( p + q ) <-> ( N - 2 ) = ( p + q ) ) ) | 
						
							| 24 | 23 | 2rexbidv |  |-  ( n = ( N - 2 ) -> ( E. p e. Prime E. q e. Prime n = ( p + q ) <-> E. p e. Prime E. q e. Prime ( N - 2 ) = ( p + q ) ) ) | 
						
							| 25 | 22 24 | imbi12d |  |-  ( n = ( N - 2 ) -> ( ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) <-> ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime ( N - 2 ) = ( p + q ) ) ) ) | 
						
							| 26 | 25 | rspcv |  |-  ( ( N - 2 ) e. Even -> ( A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime ( N - 2 ) = ( p + q ) ) ) ) | 
						
							| 27 |  | 2prm |  |-  2 e. Prime | 
						
							| 28 | 27 | a1i |  |-  ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) -> 2 e. Prime ) | 
						
							| 29 |  | oveq2 |  |-  ( r = 2 -> ( ( p + q ) + r ) = ( ( p + q ) + 2 ) ) | 
						
							| 30 | 29 | eqeq2d |  |-  ( r = 2 -> ( N = ( ( p + q ) + r ) <-> N = ( ( p + q ) + 2 ) ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) /\ r = 2 ) -> ( N = ( ( p + q ) + r ) <-> N = ( ( p + q ) + 2 ) ) ) | 
						
							| 32 | 3 | zcnd |  |-  ( N e. Even -> N e. CC ) | 
						
							| 33 |  | 2cnd |  |-  ( N e. Even -> 2 e. CC ) | 
						
							| 34 |  | npcan |  |-  ( ( N e. CC /\ 2 e. CC ) -> ( ( N - 2 ) + 2 ) = N ) | 
						
							| 35 | 34 | eqcomd |  |-  ( ( N e. CC /\ 2 e. CC ) -> N = ( ( N - 2 ) + 2 ) ) | 
						
							| 36 | 32 33 35 | syl2anc |  |-  ( N e. Even -> N = ( ( N - 2 ) + 2 ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) -> N = ( ( N - 2 ) + 2 ) ) | 
						
							| 38 |  | simpr |  |-  ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) -> ( N - 2 ) = ( p + q ) ) | 
						
							| 39 | 38 | oveq1d |  |-  ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) -> ( ( N - 2 ) + 2 ) = ( ( p + q ) + 2 ) ) | 
						
							| 40 | 37 39 | eqtrd |  |-  ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) -> N = ( ( p + q ) + 2 ) ) | 
						
							| 41 | 28 31 40 | rspcedvd |  |-  ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) -> E. r e. Prime N = ( ( p + q ) + r ) ) | 
						
							| 42 | 41 | ex |  |-  ( N e. Even -> ( ( N - 2 ) = ( p + q ) -> E. r e. Prime N = ( ( p + q ) + r ) ) ) | 
						
							| 43 | 42 | reximdv |  |-  ( N e. Even -> ( E. q e. Prime ( N - 2 ) = ( p + q ) -> E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) | 
						
							| 44 | 43 | reximdv |  |-  ( N e. Even -> ( E. p e. Prime E. q e. Prime ( N - 2 ) = ( p + q ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) | 
						
							| 45 | 44 | imim2d |  |-  ( N e. Even -> ( ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime ( N - 2 ) = ( p + q ) ) -> ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) ) | 
						
							| 46 | 26 45 | syl9r |  |-  ( N e. Even -> ( ( N - 2 ) e. Even -> ( A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) ) ) | 
						
							| 47 | 21 46 | mpd |  |-  ( N e. Even -> ( A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( N e. Even /\ 6 <_ N ) -> ( A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) ) | 
						
							| 49 | 18 48 | mpid |  |-  ( ( N e. Even /\ 6 <_ N ) -> ( A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) | 
						
							| 50 | 1 49 | syl5com |  |-  ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( ( N e. Even /\ 6 <_ N ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) |