Description: If the modern version of the original formulation of the Goldbach conjecture is valid, the (weak) binary Goldbach conjecture also holds. (Contributed by AV, 26-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | mogoldbb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 | |
|
2 | eqeq1 | |
|
3 | 2 | rexbidv | |
4 | 3 | 2rexbidv | |
5 | 4 | cbvralvw | |
6 | 6nn | |
|
7 | 6 | nnzi | |
8 | 7 | a1i | |
9 | evenz | |
|
10 | 2z | |
|
11 | 10 | a1i | |
12 | 9 11 | zaddcld | |
13 | 12 | adantr | |
14 | 4cn | |
|
15 | 2cn | |
|
16 | 4p2e6 | |
|
17 | 16 | eqcomi | |
18 | 14 15 17 | mvrraddi | |
19 | 2p2e4 | |
|
20 | 2evenALTV | |
|
21 | evenltle | |
|
22 | 20 21 | mp3an2 | |
23 | 19 22 | eqbrtrrid | |
24 | 18 23 | eqbrtrid | |
25 | 6re | |
|
26 | 25 | a1i | |
27 | 2re | |
|
28 | 27 | a1i | |
29 | 9 | zred | |
30 | 26 28 29 | 3jca | |
31 | 30 | adantr | |
32 | lesubadd | |
|
33 | 31 32 | syl | |
34 | 24 33 | mpbid | |
35 | eluz2 | |
|
36 | 8 13 34 35 | syl3anbrc | |
37 | eqeq1 | |
|
38 | 37 | rexbidv | |
39 | 38 | 2rexbidv | |
40 | 39 | rspcv | |
41 | 36 40 | syl | |
42 | 5 41 | biimtrid | |
43 | nfv | |
|
44 | nfre1 | |
|
45 | nfv | |
|
46 | nfcv | |
|
47 | nfre1 | |
|
48 | 46 47 | nfrexw | |
49 | simplrl | |
|
50 | simplrr | |
|
51 | simpr | |
|
52 | 49 50 51 | 3jca | |
53 | 52 | adantr | |
54 | simp-4l | |
|
55 | simpr | |
|
56 | mogoldbblem | |
|
57 | oveq1 | |
|
58 | 57 | eqeq2d | |
59 | oveq2 | |
|
60 | 59 | eqeq2d | |
61 | 58 60 | cbvrex2vw | |
62 | 56 61 | sylibr | |
63 | 53 54 55 62 | syl3anc | |
64 | 63 | rexlimdva2 | |
65 | 64 | expr | |
66 | 45 48 65 | rexlimd | |
67 | 66 | ex | |
68 | 43 44 67 | rexlimd | |
69 | 42 68 | syldc | |
70 | 69 | expd | |
71 | 1 70 | ralrimi | |