Metamath Proof Explorer


Theorem mogoldbb

Description: If the modern version of the original formulation of the Goldbach conjecture is valid, the (weak) binary Goldbach conjecture also holds. (Contributed by AV, 26-Dec-2021)

Ref Expression
Assertion mogoldbb n6pqrn=p+q+rnEven2<npqn=p+q

Proof

Step Hyp Ref Expression
1 nfra1 nn6pqrn=p+q+r
2 eqeq1 n=mn=p+q+rm=p+q+r
3 2 rexbidv n=mrn=p+q+rrm=p+q+r
4 3 2rexbidv n=mpqrn=p+q+rpqrm=p+q+r
5 4 cbvralvw n6pqrn=p+q+rm6pqrm=p+q+r
6 6nn 6
7 6 nnzi 6
8 7 a1i nEven2<n6
9 evenz nEvenn
10 2z 2
11 10 a1i nEven2
12 9 11 zaddcld nEvenn+2
13 12 adantr nEven2<nn+2
14 4cn 4
15 2cn 2
16 4p2e6 4+2=6
17 16 eqcomi 6=4+2
18 14 15 17 mvrraddi 62=4
19 2p2e4 2+2=4
20 2evenALTV 2Even
21 evenltle nEven2Even2<n2+2n
22 20 21 mp3an2 nEven2<n2+2n
23 19 22 eqbrtrrid nEven2<n4n
24 18 23 eqbrtrid nEven2<n62n
25 6re 6
26 25 a1i nEven6
27 2re 2
28 27 a1i nEven2
29 9 zred nEvenn
30 26 28 29 3jca nEven62n
31 30 adantr nEven2<n62n
32 lesubadd 62n62n6n+2
33 31 32 syl nEven2<n62n6n+2
34 24 33 mpbid nEven2<n6n+2
35 eluz2 n+266n+26n+2
36 8 13 34 35 syl3anbrc nEven2<nn+26
37 eqeq1 m=n+2m=p+q+rn+2=p+q+r
38 37 rexbidv m=n+2rm=p+q+rrn+2=p+q+r
39 38 2rexbidv m=n+2pqrm=p+q+rpqrn+2=p+q+r
40 39 rspcv n+26m6pqrm=p+q+rpqrn+2=p+q+r
41 36 40 syl nEven2<nm6pqrm=p+q+rpqrn+2=p+q+r
42 5 41 biimtrid nEven2<nn6pqrn=p+q+rpqrn+2=p+q+r
43 nfv pnEven2<n
44 nfre1 ppqn=p+q
45 nfv qnEven2<np
46 nfcv _q
47 nfre1 qqn=p+q
48 46 47 nfrexw qpqn=p+q
49 simplrl nEven2<npqrp
50 simplrr nEven2<npqrq
51 simpr nEven2<npqrr
52 49 50 51 3jca nEven2<npqrpqr
53 52 adantr nEven2<npqrn+2=p+q+rpqr
54 simp-4l nEven2<npqrn+2=p+q+rnEven
55 simpr nEven2<npqrn+2=p+q+rn+2=p+q+r
56 mogoldbblem pqrnEvenn+2=p+q+ryxn=y+x
57 oveq1 p=yp+q=y+q
58 57 eqeq2d p=yn=p+qn=y+q
59 oveq2 q=xy+q=y+x
60 59 eqeq2d q=xn=y+qn=y+x
61 58 60 cbvrex2vw pqn=p+qyxn=y+x
62 56 61 sylibr pqrnEvenn+2=p+q+rpqn=p+q
63 53 54 55 62 syl3anc nEven2<npqrn+2=p+q+rpqn=p+q
64 63 rexlimdva2 nEven2<npqrn+2=p+q+rpqn=p+q
65 64 expr nEven2<npqrn+2=p+q+rpqn=p+q
66 45 48 65 rexlimd nEven2<npqrn+2=p+q+rpqn=p+q
67 66 ex nEven2<npqrn+2=p+q+rpqn=p+q
68 43 44 67 rexlimd nEven2<npqrn+2=p+q+rpqn=p+q
69 42 68 syldc n6pqrn=p+q+rnEven2<npqn=p+q
70 69 expd n6pqrn=p+q+rnEven2<npqn=p+q
71 1 70 ralrimi n6pqrn=p+q+rnEven2<npqn=p+q