| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2evenALTV |  |-  2 e. Even | 
						
							| 2 |  | epee |  |-  ( ( N e. Even /\ 2 e. Even ) -> ( N + 2 ) e. Even ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( N e. Even -> ( N + 2 ) e. Even ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N e. Even /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> ( N + 2 ) e. Even ) | 
						
							| 5 |  | simp1 |  |-  ( ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N e. Even /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> ( P e. Prime /\ Q e. Prime /\ R e. Prime ) ) | 
						
							| 6 |  | simp3 |  |-  ( ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N e. Even /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> ( N + 2 ) = ( ( P + Q ) + R ) ) | 
						
							| 7 |  | even3prm2 |  |-  ( ( ( N + 2 ) e. Even /\ ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> ( P = 2 \/ Q = 2 \/ R = 2 ) ) | 
						
							| 8 | 4 5 6 7 | syl3anc |  |-  ( ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N e. Even /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> ( P = 2 \/ Q = 2 \/ R = 2 ) ) | 
						
							| 9 |  | oveq1 |  |-  ( P = 2 -> ( P + Q ) = ( 2 + Q ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( P = 2 -> ( ( P + Q ) + R ) = ( ( 2 + Q ) + R ) ) | 
						
							| 11 | 10 | eqeq2d |  |-  ( P = 2 -> ( ( N + 2 ) = ( ( P + Q ) + R ) <-> ( N + 2 ) = ( ( 2 + Q ) + R ) ) ) | 
						
							| 12 |  | 2cnd |  |-  ( ( Q e. Prime /\ R e. Prime ) -> 2 e. CC ) | 
						
							| 13 |  | prmz |  |-  ( Q e. Prime -> Q e. ZZ ) | 
						
							| 14 | 13 | zcnd |  |-  ( Q e. Prime -> Q e. CC ) | 
						
							| 15 | 14 | adantr |  |-  ( ( Q e. Prime /\ R e. Prime ) -> Q e. CC ) | 
						
							| 16 |  | prmz |  |-  ( R e. Prime -> R e. ZZ ) | 
						
							| 17 | 16 | zcnd |  |-  ( R e. Prime -> R e. CC ) | 
						
							| 18 | 17 | adantl |  |-  ( ( Q e. Prime /\ R e. Prime ) -> R e. CC ) | 
						
							| 19 |  | simp1 |  |-  ( ( 2 e. CC /\ Q e. CC /\ R e. CC ) -> 2 e. CC ) | 
						
							| 20 |  | addcl |  |-  ( ( Q e. CC /\ R e. CC ) -> ( Q + R ) e. CC ) | 
						
							| 21 | 20 | 3adant1 |  |-  ( ( 2 e. CC /\ Q e. CC /\ R e. CC ) -> ( Q + R ) e. CC ) | 
						
							| 22 |  | addass |  |-  ( ( 2 e. CC /\ Q e. CC /\ R e. CC ) -> ( ( 2 + Q ) + R ) = ( 2 + ( Q + R ) ) ) | 
						
							| 23 | 19 21 22 | comraddd |  |-  ( ( 2 e. CC /\ Q e. CC /\ R e. CC ) -> ( ( 2 + Q ) + R ) = ( ( Q + R ) + 2 ) ) | 
						
							| 24 | 12 15 18 23 | syl3anc |  |-  ( ( Q e. Prime /\ R e. Prime ) -> ( ( 2 + Q ) + R ) = ( ( Q + R ) + 2 ) ) | 
						
							| 25 | 24 | eqeq2d |  |-  ( ( Q e. Prime /\ R e. Prime ) -> ( ( N + 2 ) = ( ( 2 + Q ) + R ) <-> ( N + 2 ) = ( ( Q + R ) + 2 ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( 2 + Q ) + R ) <-> ( N + 2 ) = ( ( Q + R ) + 2 ) ) ) | 
						
							| 27 |  | evenz |  |-  ( N e. Even -> N e. ZZ ) | 
						
							| 28 | 27 | zcnd |  |-  ( N e. Even -> N e. CC ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N e. Even ) -> N e. CC ) | 
						
							| 30 |  | zaddcl |  |-  ( ( Q e. ZZ /\ R e. ZZ ) -> ( Q + R ) e. ZZ ) | 
						
							| 31 | 13 16 30 | syl2an |  |-  ( ( Q e. Prime /\ R e. Prime ) -> ( Q + R ) e. ZZ ) | 
						
							| 32 | 31 | zcnd |  |-  ( ( Q e. Prime /\ R e. Prime ) -> ( Q + R ) e. CC ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( Q + R ) e. CC ) | 
						
							| 34 |  | 2cnd |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N e. Even ) -> 2 e. CC ) | 
						
							| 35 | 29 33 34 | addcan2d |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( Q + R ) + 2 ) <-> N = ( Q + R ) ) ) | 
						
							| 36 | 26 35 | bitrd |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( 2 + Q ) + R ) <-> N = ( Q + R ) ) ) | 
						
							| 37 |  | simpll |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N = ( Q + R ) ) -> Q e. Prime ) | 
						
							| 38 |  | oveq1 |  |-  ( p = Q -> ( p + q ) = ( Q + q ) ) | 
						
							| 39 | 38 | eqeq2d |  |-  ( p = Q -> ( N = ( p + q ) <-> N = ( Q + q ) ) ) | 
						
							| 40 | 39 | rexbidv |  |-  ( p = Q -> ( E. q e. Prime N = ( p + q ) <-> E. q e. Prime N = ( Q + q ) ) ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( ( Q e. Prime /\ R e. Prime ) /\ N = ( Q + R ) ) /\ p = Q ) -> ( E. q e. Prime N = ( p + q ) <-> E. q e. Prime N = ( Q + q ) ) ) | 
						
							| 42 |  | simplr |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N = ( Q + R ) ) -> R e. Prime ) | 
						
							| 43 |  | simpr |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N = ( Q + R ) ) -> N = ( Q + R ) ) | 
						
							| 44 |  | oveq2 |  |-  ( q = R -> ( Q + q ) = ( Q + R ) ) | 
						
							| 45 | 44 | eqcomd |  |-  ( q = R -> ( Q + R ) = ( Q + q ) ) | 
						
							| 46 | 43 45 | sylan9eq |  |-  ( ( ( ( Q e. Prime /\ R e. Prime ) /\ N = ( Q + R ) ) /\ q = R ) -> N = ( Q + q ) ) | 
						
							| 47 | 42 46 | rspcedeq2vd |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N = ( Q + R ) ) -> E. q e. Prime N = ( Q + q ) ) | 
						
							| 48 | 37 41 47 | rspcedvd |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N = ( Q + R ) ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) | 
						
							| 49 | 48 | ex |  |-  ( ( Q e. Prime /\ R e. Prime ) -> ( N = ( Q + R ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( N = ( Q + R ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 51 | 36 50 | sylbid |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( 2 + Q ) + R ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 52 | 51 | com12 |  |-  ( ( N + 2 ) = ( ( 2 + Q ) + R ) -> ( ( ( Q e. Prime /\ R e. Prime ) /\ N e. Even ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 53 | 11 52 | biimtrdi |  |-  ( P = 2 -> ( ( N + 2 ) = ( ( P + Q ) + R ) -> ( ( ( Q e. Prime /\ R e. Prime ) /\ N e. Even ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) ) | 
						
							| 54 | 53 | com13 |  |-  ( ( ( Q e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( P + Q ) + R ) -> ( P = 2 -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) ) | 
						
							| 55 | 54 | ex |  |-  ( ( Q e. Prime /\ R e. Prime ) -> ( N e. Even -> ( ( N + 2 ) = ( ( P + Q ) + R ) -> ( P = 2 -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) ) ) | 
						
							| 56 | 55 | 3adant1 |  |-  ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) -> ( N e. Even -> ( ( N + 2 ) = ( ( P + Q ) + R ) -> ( P = 2 -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) ) ) | 
						
							| 57 | 56 | 3imp |  |-  ( ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N e. Even /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> ( P = 2 -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 58 | 57 | com12 |  |-  ( P = 2 -> ( ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N e. Even /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 59 |  | oveq2 |  |-  ( Q = 2 -> ( P + Q ) = ( P + 2 ) ) | 
						
							| 60 | 59 | oveq1d |  |-  ( Q = 2 -> ( ( P + Q ) + R ) = ( ( P + 2 ) + R ) ) | 
						
							| 61 | 60 | eqeq2d |  |-  ( Q = 2 -> ( ( N + 2 ) = ( ( P + Q ) + R ) <-> ( N + 2 ) = ( ( P + 2 ) + R ) ) ) | 
						
							| 62 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 63 | 62 | zcnd |  |-  ( P e. Prime -> P e. CC ) | 
						
							| 64 | 63 | adantr |  |-  ( ( P e. Prime /\ R e. Prime ) -> P e. CC ) | 
						
							| 65 |  | 2cnd |  |-  ( ( P e. Prime /\ R e. Prime ) -> 2 e. CC ) | 
						
							| 66 | 17 | adantl |  |-  ( ( P e. Prime /\ R e. Prime ) -> R e. CC ) | 
						
							| 67 | 64 65 66 | 3jca |  |-  ( ( P e. Prime /\ R e. Prime ) -> ( P e. CC /\ 2 e. CC /\ R e. CC ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( P e. CC /\ 2 e. CC /\ R e. CC ) ) | 
						
							| 69 |  | add32 |  |-  ( ( P e. CC /\ 2 e. CC /\ R e. CC ) -> ( ( P + 2 ) + R ) = ( ( P + R ) + 2 ) ) | 
						
							| 70 | 68 69 | syl |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( ( P + 2 ) + R ) = ( ( P + R ) + 2 ) ) | 
						
							| 71 | 70 | eqeq2d |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( P + 2 ) + R ) <-> ( N + 2 ) = ( ( P + R ) + 2 ) ) ) | 
						
							| 72 | 28 | adantl |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> N e. CC ) | 
						
							| 73 |  | zaddcl |  |-  ( ( P e. ZZ /\ R e. ZZ ) -> ( P + R ) e. ZZ ) | 
						
							| 74 | 62 16 73 | syl2an |  |-  ( ( P e. Prime /\ R e. Prime ) -> ( P + R ) e. ZZ ) | 
						
							| 75 | 74 | zcnd |  |-  ( ( P e. Prime /\ R e. Prime ) -> ( P + R ) e. CC ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( P + R ) e. CC ) | 
						
							| 77 |  | 2cnd |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> 2 e. CC ) | 
						
							| 78 | 72 76 77 | addcan2d |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( P + R ) + 2 ) <-> N = ( P + R ) ) ) | 
						
							| 79 | 71 78 | bitrd |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( P + 2 ) + R ) <-> N = ( P + R ) ) ) | 
						
							| 80 |  | simpll |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N = ( P + R ) ) -> P e. Prime ) | 
						
							| 81 |  | oveq1 |  |-  ( p = P -> ( p + q ) = ( P + q ) ) | 
						
							| 82 | 81 | eqeq2d |  |-  ( p = P -> ( N = ( p + q ) <-> N = ( P + q ) ) ) | 
						
							| 83 | 82 | rexbidv |  |-  ( p = P -> ( E. q e. Prime N = ( p + q ) <-> E. q e. Prime N = ( P + q ) ) ) | 
						
							| 84 | 83 | adantl |  |-  ( ( ( ( P e. Prime /\ R e. Prime ) /\ N = ( P + R ) ) /\ p = P ) -> ( E. q e. Prime N = ( p + q ) <-> E. q e. Prime N = ( P + q ) ) ) | 
						
							| 85 |  | simplr |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N = ( P + R ) ) -> R e. Prime ) | 
						
							| 86 |  | simpr |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N = ( P + R ) ) -> N = ( P + R ) ) | 
						
							| 87 |  | oveq2 |  |-  ( q = R -> ( P + q ) = ( P + R ) ) | 
						
							| 88 | 87 | eqcomd |  |-  ( q = R -> ( P + R ) = ( P + q ) ) | 
						
							| 89 | 86 88 | sylan9eq |  |-  ( ( ( ( P e. Prime /\ R e. Prime ) /\ N = ( P + R ) ) /\ q = R ) -> N = ( P + q ) ) | 
						
							| 90 | 85 89 | rspcedeq2vd |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N = ( P + R ) ) -> E. q e. Prime N = ( P + q ) ) | 
						
							| 91 | 80 84 90 | rspcedvd |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N = ( P + R ) ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) | 
						
							| 92 | 91 | ex |  |-  ( ( P e. Prime /\ R e. Prime ) -> ( N = ( P + R ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( N = ( P + R ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 94 | 79 93 | sylbid |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( P + 2 ) + R ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 95 | 94 | com12 |  |-  ( ( N + 2 ) = ( ( P + 2 ) + R ) -> ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 96 | 61 95 | biimtrdi |  |-  ( Q = 2 -> ( ( N + 2 ) = ( ( P + Q ) + R ) -> ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) ) | 
						
							| 97 | 96 | com13 |  |-  ( ( ( P e. Prime /\ R e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( P + Q ) + R ) -> ( Q = 2 -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) ) | 
						
							| 98 | 97 | ex |  |-  ( ( P e. Prime /\ R e. Prime ) -> ( N e. Even -> ( ( N + 2 ) = ( ( P + Q ) + R ) -> ( Q = 2 -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) ) ) | 
						
							| 99 | 98 | 3adant2 |  |-  ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) -> ( N e. Even -> ( ( N + 2 ) = ( ( P + Q ) + R ) -> ( Q = 2 -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) ) ) | 
						
							| 100 | 99 | 3imp |  |-  ( ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N e. Even /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> ( Q = 2 -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 101 | 100 | com12 |  |-  ( Q = 2 -> ( ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N e. Even /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 102 |  | oveq2 |  |-  ( R = 2 -> ( ( P + Q ) + R ) = ( ( P + Q ) + 2 ) ) | 
						
							| 103 | 102 | eqeq2d |  |-  ( R = 2 -> ( ( N + 2 ) = ( ( P + Q ) + R ) <-> ( N + 2 ) = ( ( P + Q ) + 2 ) ) ) | 
						
							| 104 | 28 | adantl |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ N e. Even ) -> N e. CC ) | 
						
							| 105 |  | zaddcl |  |-  ( ( P e. ZZ /\ Q e. ZZ ) -> ( P + Q ) e. ZZ ) | 
						
							| 106 | 62 13 105 | syl2an |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( P + Q ) e. ZZ ) | 
						
							| 107 | 106 | zcnd |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( P + Q ) e. CC ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ N e. Even ) -> ( P + Q ) e. CC ) | 
						
							| 109 |  | 2cnd |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ N e. Even ) -> 2 e. CC ) | 
						
							| 110 | 104 108 109 | addcan2d |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( P + Q ) + 2 ) <-> N = ( P + Q ) ) ) | 
						
							| 111 |  | simpll |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> P e. Prime ) | 
						
							| 112 | 83 | adantl |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) /\ p = P ) -> ( E. q e. Prime N = ( p + q ) <-> E. q e. Prime N = ( P + q ) ) ) | 
						
							| 113 |  | simplr |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> Q e. Prime ) | 
						
							| 114 |  | simpr |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> N = ( P + Q ) ) | 
						
							| 115 |  | oveq2 |  |-  ( q = Q -> ( P + q ) = ( P + Q ) ) | 
						
							| 116 | 115 | eqcomd |  |-  ( q = Q -> ( P + Q ) = ( P + q ) ) | 
						
							| 117 | 114 116 | sylan9eq |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) /\ q = Q ) -> N = ( P + q ) ) | 
						
							| 118 | 113 117 | rspcedeq2vd |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> E. q e. Prime N = ( P + q ) ) | 
						
							| 119 | 111 112 118 | rspcedvd |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ N = ( P + Q ) ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) | 
						
							| 120 | 119 | ex |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( N = ( P + Q ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 121 | 120 | adantr |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ N e. Even ) -> ( N = ( P + Q ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 122 | 110 121 | sylbid |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( P + Q ) + 2 ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 123 | 122 | com12 |  |-  ( ( N + 2 ) = ( ( P + Q ) + 2 ) -> ( ( ( P e. Prime /\ Q e. Prime ) /\ N e. Even ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 124 | 103 123 | biimtrdi |  |-  ( R = 2 -> ( ( N + 2 ) = ( ( P + Q ) + R ) -> ( ( ( P e. Prime /\ Q e. Prime ) /\ N e. Even ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) ) | 
						
							| 125 | 124 | com13 |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ N e. Even ) -> ( ( N + 2 ) = ( ( P + Q ) + R ) -> ( R = 2 -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) ) | 
						
							| 126 | 125 | ex |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( N e. Even -> ( ( N + 2 ) = ( ( P + Q ) + R ) -> ( R = 2 -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) ) ) | 
						
							| 127 | 126 | 3adant3 |  |-  ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) -> ( N e. Even -> ( ( N + 2 ) = ( ( P + Q ) + R ) -> ( R = 2 -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) ) ) | 
						
							| 128 | 127 | 3imp |  |-  ( ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N e. Even /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> ( R = 2 -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 129 | 128 | com12 |  |-  ( R = 2 -> ( ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N e. Even /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 130 | 58 101 129 | 3jaoi |  |-  ( ( P = 2 \/ Q = 2 \/ R = 2 ) -> ( ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N e. Even /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) ) | 
						
							| 131 | 8 130 | mpcom |  |-  ( ( ( P e. Prime /\ Q e. Prime /\ R e. Prime ) /\ N e. Even /\ ( N + 2 ) = ( ( P + Q ) + R ) ) -> E. p e. Prime E. q e. Prime N = ( p + q ) ) |