| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwp1fsum.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | pwp1fsum.n |  |-  ( ph -> N e. NN ) | 
						
							| 3 |  | oddpwp1fsum.n |  |-  ( ph -> -. 2 || N ) | 
						
							| 4 | 2 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 5 |  | oddm1even |  |-  ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) | 
						
							| 7 | 3 6 | mpbid |  |-  ( ph -> 2 || ( N - 1 ) ) | 
						
							| 8 |  | m1expe |  |-  ( 2 || ( N - 1 ) -> ( -u 1 ^ ( N - 1 ) ) = 1 ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> ( -u 1 ^ ( N - 1 ) ) = 1 ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ph -> ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) = ( 1 x. ( A ^ N ) ) ) | 
						
							| 11 | 10 | oveq1d |  |-  ( ph -> ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 1 ) = ( ( 1 x. ( A ^ N ) ) + 1 ) ) | 
						
							| 12 | 1 2 | pwp1fsum |  |-  ( ph -> ( ( ( -u 1 ^ ( N - 1 ) ) x. ( A ^ N ) ) + 1 ) = ( ( A + 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) | 
						
							| 13 | 2 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 14 | 1 13 | expcld |  |-  ( ph -> ( A ^ N ) e. CC ) | 
						
							| 15 | 14 | mullidd |  |-  ( ph -> ( 1 x. ( A ^ N ) ) = ( A ^ N ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ph -> ( ( 1 x. ( A ^ N ) ) + 1 ) = ( ( A ^ N ) + 1 ) ) | 
						
							| 17 | 11 12 16 | 3eqtr3rd |  |-  ( ph -> ( ( A ^ N ) + 1 ) = ( ( A + 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( ( -u 1 ^ k ) x. ( A ^ k ) ) ) ) |