| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwp1fsum.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | pwp1fsum.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | oddpwp1fsum.n | ⊢ ( 𝜑  →  ¬  2  ∥  𝑁 ) | 
						
							| 4 | 2 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 5 |  | oddm1even | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  2  ∥  𝑁  ↔  2  ∥  ( 𝑁  −  1 ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  ( ¬  2  ∥  𝑁  ↔  2  ∥  ( 𝑁  −  1 ) ) ) | 
						
							| 7 | 3 6 | mpbid | ⊢ ( 𝜑  →  2  ∥  ( 𝑁  −  1 ) ) | 
						
							| 8 |  | m1expe | ⊢ ( 2  ∥  ( 𝑁  −  1 )  →  ( - 1 ↑ ( 𝑁  −  1 ) )  =  1 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  ( - 1 ↑ ( 𝑁  −  1 ) )  =  1 ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝜑  →  ( ( - 1 ↑ ( 𝑁  −  1 ) )  ·  ( 𝐴 ↑ 𝑁 ) )  =  ( 1  ·  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝜑  →  ( ( ( - 1 ↑ ( 𝑁  −  1 ) )  ·  ( 𝐴 ↑ 𝑁 ) )  +  1 )  =  ( ( 1  ·  ( 𝐴 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 12 | 1 2 | pwp1fsum | ⊢ ( 𝜑  →  ( ( ( - 1 ↑ ( 𝑁  −  1 ) )  ·  ( 𝐴 ↑ 𝑁 ) )  +  1 )  =  ( ( 𝐴  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) ) ) | 
						
							| 13 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 14 | 1 13 | expcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 15 | 14 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  ( 𝐴 ↑ 𝑁 ) )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝜑  →  ( ( 1  ·  ( 𝐴 ↑ 𝑁 ) )  +  1 )  =  ( ( 𝐴 ↑ 𝑁 )  +  1 ) ) | 
						
							| 17 | 11 12 16 | 3eqtr3rd | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 𝑁 )  +  1 )  =  ( ( 𝐴  +  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) ) ) |