Step |
Hyp |
Ref |
Expression |
1 |
|
pwp1fsum.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
pwp1fsum.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
4 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) |
5 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → - 1 ∈ ℂ ) |
7 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
9 |
6 8
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
11 |
10 8
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
12 |
9 11
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
13 |
4 12
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
14 |
1 3 13
|
adddird |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) + ( 1 · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ) |
15 |
4 1 12
|
fsummulc2 |
⊢ ( 𝜑 → ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 · ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
16 |
10 12
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 · ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝐴 ) ) |
17 |
9 11 10
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝐴 ) = ( ( - 1 ↑ 𝑘 ) · ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) ) |
18 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
19 |
1 7 18
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) |
21 |
20
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( - 1 ↑ 𝑘 ) · ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) = ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
22 |
16 17 21
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 · ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
23 |
22
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 · ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
24 |
15 23
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
25 |
13
|
mulid2d |
⊢ ( 𝜑 → ( 1 · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
26 |
24 25
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) + ( 1 · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) + Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
27 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
28 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
29 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
30 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
31 |
29 30
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℤ ) |
32 |
2 31
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
33 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
34 |
7 33
|
syl |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
36 |
10 35
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) |
37 |
9 36
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
38 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑙 − 1 ) → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ ( 𝑙 − 1 ) ) ) |
39 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑙 − 1 ) → ( 𝑘 + 1 ) = ( ( 𝑙 − 1 ) + 1 ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑘 = ( 𝑙 − 1 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( 𝐴 ↑ ( ( 𝑙 − 1 ) + 1 ) ) ) |
41 |
38 40
|
oveq12d |
⊢ ( 𝑘 = ( 𝑙 − 1 ) → ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ ( ( 𝑙 − 1 ) + 1 ) ) ) ) |
42 |
27 28 32 37 41
|
fsumshft |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = Σ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ ( ( 𝑙 − 1 ) + 1 ) ) ) ) |
43 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) → 𝑙 ∈ ℤ ) |
44 |
43
|
zcnd |
⊢ ( 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) → 𝑙 ∈ ℂ ) |
45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) → 𝑙 ∈ ℂ ) |
46 |
|
npcan1 |
⊢ ( 𝑙 ∈ ℂ → ( ( 𝑙 − 1 ) + 1 ) = 𝑙 ) |
47 |
45 46
|
syl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) → ( ( 𝑙 − 1 ) + 1 ) = 𝑙 ) |
48 |
47
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) → ( 𝐴 ↑ ( ( 𝑙 − 1 ) + 1 ) ) = ( 𝐴 ↑ 𝑙 ) ) |
49 |
48
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) → ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ ( ( 𝑙 − 1 ) + 1 ) ) ) = ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) ) |
50 |
49
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ ( ( 𝑙 − 1 ) + 1 ) ) ) = Σ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) ) |
51 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
52 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
53 |
51 52
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
54 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
55 |
54
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ( ℤ≥ ‘ 1 ) |
56 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
57 |
55 56
|
eqtr4i |
⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ℕ |
58 |
57
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 0 + 1 ) ) = ℕ ) |
59 |
2 53 58
|
3eltr4d |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
60 |
54
|
oveq1i |
⊢ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) |
61 |
60
|
eleq2i |
⊢ ( 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ↔ 𝑙 ∈ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
62 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → - 1 ∈ ℂ ) |
63 |
|
nnm1nn0 |
⊢ ( 𝑙 ∈ ℕ → ( 𝑙 − 1 ) ∈ ℕ0 ) |
64 |
63
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 𝑙 − 1 ) ∈ ℕ0 ) |
65 |
62 64
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( - 1 ↑ ( 𝑙 − 1 ) ) ∈ ℂ ) |
66 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
67 |
|
nnnn0 |
⊢ ( 𝑙 ∈ ℕ → 𝑙 ∈ ℕ0 ) |
68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → 𝑙 ∈ ℕ0 ) |
69 |
66 68
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 𝐴 ↑ 𝑙 ) ∈ ℂ ) |
70 |
65 69
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) ∈ ℂ ) |
71 |
70
|
expcom |
⊢ ( 𝑙 ∈ ℕ → ( 𝜑 → ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) ∈ ℂ ) ) |
72 |
|
elfznn |
⊢ ( 𝑙 ∈ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) → 𝑙 ∈ ℕ ) |
73 |
71 72
|
syl11 |
⊢ ( 𝜑 → ( 𝑙 ∈ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) → ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) ∈ ℂ ) ) |
74 |
61 73
|
syl5bi |
⊢ ( 𝜑 → ( 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) → ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) ∈ ℂ ) ) |
75 |
74
|
imp |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) → ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) ∈ ℂ ) |
76 |
|
oveq1 |
⊢ ( 𝑙 = ( ( 𝑁 − 1 ) + 1 ) → ( 𝑙 − 1 ) = ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) ) |
77 |
76
|
oveq2d |
⊢ ( 𝑙 = ( ( 𝑁 − 1 ) + 1 ) → ( - 1 ↑ ( 𝑙 − 1 ) ) = ( - 1 ↑ ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) ) ) |
78 |
|
oveq2 |
⊢ ( 𝑙 = ( ( 𝑁 − 1 ) + 1 ) → ( 𝐴 ↑ 𝑙 ) = ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) ) |
79 |
77 78
|
oveq12d |
⊢ ( 𝑙 = ( ( 𝑁 − 1 ) + 1 ) → ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) = ( ( - 1 ↑ ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) ) · ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) ) ) |
80 |
59 75 79
|
fsumm1 |
⊢ ( 𝜑 → Σ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) = ( Σ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) ) ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) + ( ( - 1 ↑ ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) ) · ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) ) ) ) |
81 |
32
|
zcnd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℂ ) |
82 |
|
pncan1 |
⊢ ( ( 𝑁 − 1 ) ∈ ℂ → ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) = ( 𝑁 − 1 ) ) |
83 |
81 82
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) = ( 𝑁 − 1 ) ) |
84 |
83
|
oveq2d |
⊢ ( 𝜑 → ( ( 0 + 1 ) ... ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) ) = ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ) |
85 |
84
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) ) ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) = Σ 𝑙 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) ) |
86 |
|
oveq1 |
⊢ ( 𝑙 = 𝑘 → ( 𝑙 − 1 ) = ( 𝑘 − 1 ) ) |
87 |
86
|
oveq2d |
⊢ ( 𝑙 = 𝑘 → ( - 1 ↑ ( 𝑙 − 1 ) ) = ( - 1 ↑ ( 𝑘 − 1 ) ) ) |
88 |
|
oveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝐴 ↑ 𝑙 ) = ( 𝐴 ↑ 𝑘 ) ) |
89 |
87 88
|
oveq12d |
⊢ ( 𝑙 = 𝑘 → ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) = ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
90 |
89
|
cbvsumv |
⊢ Σ 𝑙 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) = Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) |
91 |
85 90
|
eqtrdi |
⊢ ( 𝜑 → Σ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) ) ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) = Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) |
92 |
83
|
oveq2d |
⊢ ( 𝜑 → ( - 1 ↑ ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) ) = ( - 1 ↑ ( 𝑁 − 1 ) ) ) |
93 |
53
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
94 |
92 93
|
oveq12d |
⊢ ( 𝜑 → ( ( - 1 ↑ ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) ) · ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) ) = ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) |
95 |
91 94
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) ) ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) + ( ( - 1 ↑ ( ( ( 𝑁 − 1 ) + 1 ) − 1 ) ) · ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) ) ) = ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
96 |
80 95
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑙 ∈ ( ( 0 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ( ( - 1 ↑ ( 𝑙 − 1 ) ) · ( 𝐴 ↑ 𝑙 ) ) = ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
97 |
42 50 96
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
98 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
99 |
|
elnn0uz |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 ↔ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
100 |
98 99
|
sylib |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
101 |
2 100
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
102 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ 0 ) ) |
103 |
|
exp0 |
⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) |
104 |
5 103
|
ax-mp |
⊢ ( - 1 ↑ 0 ) = 1 |
105 |
102 104
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( - 1 ↑ 𝑘 ) = 1 ) |
106 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ 0 ) ) |
107 |
105 106
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) = ( 1 · ( 𝐴 ↑ 0 ) ) ) |
108 |
101 12 107
|
fsum1p |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) = ( ( 1 · ( 𝐴 ↑ 0 ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
109 |
1
|
exp0d |
⊢ ( 𝜑 → ( 𝐴 ↑ 0 ) = 1 ) |
110 |
109
|
oveq2d |
⊢ ( 𝜑 → ( 1 · ( 𝐴 ↑ 0 ) ) = ( 1 · 1 ) ) |
111 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
112 |
110 111
|
eqtrdi |
⊢ ( 𝜑 → ( 1 · ( 𝐴 ↑ 0 ) ) = 1 ) |
113 |
112
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 · ( 𝐴 ↑ 0 ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( 1 + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
114 |
|
fzfid |
⊢ ( 𝜑 → ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ∈ Fin ) |
115 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℕ ) |
116 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → - 1 ∈ ℂ ) |
117 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
118 |
117
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
119 |
116 118
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
120 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
121 |
120 118
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
122 |
119 121
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
123 |
122
|
expcom |
⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) ) |
124 |
115 123
|
syl |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝜑 → ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) ) |
125 |
54
|
oveq1i |
⊢ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) = ( 1 ... ( 𝑁 − 1 ) ) |
126 |
124 125
|
eleq2s |
⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) → ( 𝜑 → ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) ) |
127 |
126
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ) → ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
128 |
114 127
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
129 |
3 128
|
addcomd |
⊢ ( 𝜑 → ( 1 + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) + 1 ) ) |
130 |
108 113 129
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) = ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) + 1 ) ) |
131 |
97 130
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) + Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) + ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) + 1 ) ) ) |
132 |
|
nnm1nn0 |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) |
133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
134 |
116 133
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( - 1 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
135 |
134 121
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
136 |
135
|
expcom |
⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) ) |
137 |
115 136
|
syl |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝜑 → ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) ) |
138 |
137 125
|
eleq2s |
⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) → ( 𝜑 → ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) ) |
139 |
138
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ) → ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
140 |
114 139
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
141 |
5
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
142 |
2 98
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
143 |
141 142
|
expcld |
⊢ ( 𝜑 → ( - 1 ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
144 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
145 |
1 144
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
146 |
143 145
|
mulcld |
⊢ ( 𝜑 → ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ∈ ℂ ) |
147 |
140 146
|
addcld |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) ∈ ℂ ) |
148 |
147 128 3
|
addassd |
⊢ ( 𝜑 → ( ( ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) + 1 ) = ( ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) + ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) + 1 ) ) ) |
149 |
140 146
|
addcomd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) = ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
150 |
149
|
oveq1d |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
151 |
146 140 128
|
addassd |
⊢ ( 𝜑 → ( ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) + ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ) |
152 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
153 |
|
npcan1 |
⊢ ( 𝑘 ∈ ℂ → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
154 |
152 153
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
155 |
154
|
eqcomd |
⊢ ( 𝑘 ∈ ℕ → 𝑘 = ( ( 𝑘 − 1 ) + 1 ) ) |
156 |
155
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ ( ( 𝑘 − 1 ) + 1 ) ) ) |
157 |
5
|
a1i |
⊢ ( 𝑘 ∈ ℕ → - 1 ∈ ℂ ) |
158 |
157 132
|
expp1d |
⊢ ( 𝑘 ∈ ℕ → ( - 1 ↑ ( ( 𝑘 − 1 ) + 1 ) ) = ( ( - 1 ↑ ( 𝑘 − 1 ) ) · - 1 ) ) |
159 |
157 132
|
expcld |
⊢ ( 𝑘 ∈ ℕ → ( - 1 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
160 |
159 157
|
mulcomd |
⊢ ( 𝑘 ∈ ℕ → ( ( - 1 ↑ ( 𝑘 − 1 ) ) · - 1 ) = ( - 1 · ( - 1 ↑ ( 𝑘 − 1 ) ) ) ) |
161 |
156 158 160
|
3eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( - 1 ↑ 𝑘 ) = ( - 1 · ( - 1 ↑ ( 𝑘 − 1 ) ) ) ) |
162 |
161
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( ( - 1 ↑ ( 𝑘 − 1 ) ) + ( - 1 ↑ 𝑘 ) ) = ( ( - 1 ↑ ( 𝑘 − 1 ) ) + ( - 1 · ( - 1 ↑ ( 𝑘 − 1 ) ) ) ) ) |
163 |
159
|
mulm1d |
⊢ ( 𝑘 ∈ ℕ → ( - 1 · ( - 1 ↑ ( 𝑘 − 1 ) ) ) = - ( - 1 ↑ ( 𝑘 − 1 ) ) ) |
164 |
163
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( ( - 1 ↑ ( 𝑘 − 1 ) ) + ( - 1 · ( - 1 ↑ ( 𝑘 − 1 ) ) ) ) = ( ( - 1 ↑ ( 𝑘 − 1 ) ) + - ( - 1 ↑ ( 𝑘 − 1 ) ) ) ) |
165 |
159
|
negidd |
⊢ ( 𝑘 ∈ ℕ → ( ( - 1 ↑ ( 𝑘 − 1 ) ) + - ( - 1 ↑ ( 𝑘 − 1 ) ) ) = 0 ) |
166 |
162 164 165
|
3eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( ( - 1 ↑ ( 𝑘 − 1 ) ) + ( - 1 ↑ 𝑘 ) ) = 0 ) |
167 |
166
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑘 − 1 ) ) + ( - 1 ↑ 𝑘 ) ) = 0 ) |
168 |
167
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) + ( - 1 ↑ 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) = ( 0 · ( 𝐴 ↑ 𝑘 ) ) ) |
169 |
134 119 121
|
adddird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) + ( - 1 ↑ 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) = ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
170 |
121
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 0 · ( 𝐴 ↑ 𝑘 ) ) = 0 ) |
171 |
168 169 170
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = 0 ) |
172 |
171
|
expcom |
⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = 0 ) ) |
173 |
115 172
|
syl |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝜑 → ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = 0 ) ) |
174 |
173 125
|
eleq2s |
⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) → ( 𝜑 → ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = 0 ) ) |
175 |
174
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ) → ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = 0 ) |
176 |
175
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) 0 ) |
177 |
114 139 127
|
fsumadd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
178 |
114
|
olcd |
⊢ ( 𝜑 → ( ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ∈ Fin ) ) |
179 |
|
sumz |
⊢ ( ( ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ∈ Fin ) → Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) 0 = 0 ) |
180 |
178 179
|
syl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) 0 = 0 ) |
181 |
176 177 180
|
3eqtr3d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = 0 ) |
182 |
181
|
oveq2d |
⊢ ( 𝜑 → ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) + ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) = ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) + 0 ) ) |
183 |
146
|
addid1d |
⊢ ( 𝜑 → ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) + 0 ) = ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) |
184 |
182 183
|
eqtrd |
⊢ ( 𝜑 → ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) + ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) = ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) |
185 |
150 151 184
|
3eqtrd |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) |
186 |
185
|
oveq1d |
⊢ ( 𝜑 → ( ( ( Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) + 1 ) = ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) + 1 ) ) |
187 |
131 148 186
|
3eqtr2d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) + Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) + 1 ) ) |
188 |
14 26 187
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) + 1 ) ) |
189 |
188
|
eqcomd |
⊢ ( 𝜑 → ( ( ( - 1 ↑ ( 𝑁 − 1 ) ) · ( 𝐴 ↑ 𝑁 ) ) + 1 ) = ( ( 𝐴 + 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( - 1 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |