Metamath Proof Explorer


Theorem pwp1fsum

Description: The n-th power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021)

Ref Expression
Hypotheses pwp1fsum.a φ A
pwp1fsum.n φ N
Assertion pwp1fsum φ 1 N 1 A N + 1 = A + 1 k = 0 N 1 1 k A k

Proof

Step Hyp Ref Expression
1 pwp1fsum.a φ A
2 pwp1fsum.n φ N
3 1cnd φ 1
4 fzfid φ 0 N 1 Fin
5 neg1cn 1
6 5 a1i φ k 0 N 1 1
7 elfznn0 k 0 N 1 k 0
8 7 adantl φ k 0 N 1 k 0
9 6 8 expcld φ k 0 N 1 1 k
10 1 adantr φ k 0 N 1 A
11 10 8 expcld φ k 0 N 1 A k
12 9 11 mulcld φ k 0 N 1 1 k A k
13 4 12 fsumcl φ k = 0 N 1 1 k A k
14 1 3 13 adddird φ A + 1 k = 0 N 1 1 k A k = A k = 0 N 1 1 k A k + 1 k = 0 N 1 1 k A k
15 4 1 12 fsummulc2 φ A k = 0 N 1 1 k A k = k = 0 N 1 A 1 k A k
16 10 12 mulcomd φ k 0 N 1 A 1 k A k = 1 k A k A
17 9 11 10 mulassd φ k 0 N 1 1 k A k A = 1 k A k A
18 expp1 A k 0 A k + 1 = A k A
19 1 7 18 syl2an φ k 0 N 1 A k + 1 = A k A
20 19 eqcomd φ k 0 N 1 A k A = A k + 1
21 20 oveq2d φ k 0 N 1 1 k A k A = 1 k A k + 1
22 16 17 21 3eqtrd φ k 0 N 1 A 1 k A k = 1 k A k + 1
23 22 sumeq2dv φ k = 0 N 1 A 1 k A k = k = 0 N 1 1 k A k + 1
24 15 23 eqtrd φ A k = 0 N 1 1 k A k = k = 0 N 1 1 k A k + 1
25 13 mulid2d φ 1 k = 0 N 1 1 k A k = k = 0 N 1 1 k A k
26 24 25 oveq12d φ A k = 0 N 1 1 k A k + 1 k = 0 N 1 1 k A k = k = 0 N 1 1 k A k + 1 + k = 0 N 1 1 k A k
27 1zzd φ 1
28 0zd φ 0
29 nnz N N
30 peano2zm N N 1
31 29 30 syl N N 1
32 2 31 syl φ N 1
33 peano2nn0 k 0 k + 1 0
34 7 33 syl k 0 N 1 k + 1 0
35 34 adantl φ k 0 N 1 k + 1 0
36 10 35 expcld φ k 0 N 1 A k + 1
37 9 36 mulcld φ k 0 N 1 1 k A k + 1
38 oveq2 k = l 1 1 k = 1 l 1
39 oveq1 k = l 1 k + 1 = l - 1 + 1
40 39 oveq2d k = l 1 A k + 1 = A l - 1 + 1
41 38 40 oveq12d k = l 1 1 k A k + 1 = 1 l 1 A l - 1 + 1
42 27 28 32 37 41 fsumshft φ k = 0 N 1 1 k A k + 1 = l = 0 + 1 N - 1 + 1 1 l 1 A l - 1 + 1
43 elfzelz l 0 + 1 N - 1 + 1 l
44 43 zcnd l 0 + 1 N - 1 + 1 l
45 44 adantl φ l 0 + 1 N - 1 + 1 l
46 npcan1 l l - 1 + 1 = l
47 45 46 syl φ l 0 + 1 N - 1 + 1 l - 1 + 1 = l
48 47 oveq2d φ l 0 + 1 N - 1 + 1 A l - 1 + 1 = A l
49 48 oveq2d φ l 0 + 1 N - 1 + 1 1 l 1 A l - 1 + 1 = 1 l 1 A l
50 49 sumeq2dv φ l = 0 + 1 N - 1 + 1 1 l 1 A l - 1 + 1 = l = 0 + 1 N - 1 + 1 1 l 1 A l
51 2 nncnd φ N
52 npcan1 N N - 1 + 1 = N
53 51 52 syl φ N - 1 + 1 = N
54 0p1e1 0 + 1 = 1
55 54 fveq2i 0 + 1 = 1
56 nnuz = 1
57 55 56 eqtr4i 0 + 1 =
58 57 a1i φ 0 + 1 =
59 2 53 58 3eltr4d φ N - 1 + 1 0 + 1
60 54 oveq1i 0 + 1 N - 1 + 1 = 1 N - 1 + 1
61 60 eleq2i l 0 + 1 N - 1 + 1 l 1 N - 1 + 1
62 5 a1i φ l 1
63 nnm1nn0 l l 1 0
64 63 adantl φ l l 1 0
65 62 64 expcld φ l 1 l 1
66 1 adantr φ l A
67 nnnn0 l l 0
68 67 adantl φ l l 0
69 66 68 expcld φ l A l
70 65 69 mulcld φ l 1 l 1 A l
71 70 expcom l φ 1 l 1 A l
72 elfznn l 1 N - 1 + 1 l
73 71 72 syl11 φ l 1 N - 1 + 1 1 l 1 A l
74 61 73 syl5bi φ l 0 + 1 N - 1 + 1 1 l 1 A l
75 74 imp φ l 0 + 1 N - 1 + 1 1 l 1 A l
76 oveq1 l = N - 1 + 1 l 1 = N 1 + 1 - 1
77 76 oveq2d l = N - 1 + 1 1 l 1 = 1 N 1 + 1 - 1
78 oveq2 l = N - 1 + 1 A l = A N - 1 + 1
79 77 78 oveq12d l = N - 1 + 1 1 l 1 A l = 1 N 1 + 1 - 1 A N - 1 + 1
80 59 75 79 fsumm1 φ l = 0 + 1 N - 1 + 1 1 l 1 A l = l = 0 + 1 N 1 + 1 - 1 1 l 1 A l + 1 N 1 + 1 - 1 A N - 1 + 1
81 32 zcnd φ N 1
82 pncan1 N 1 N 1 + 1 - 1 = N 1
83 81 82 syl φ N 1 + 1 - 1 = N 1
84 83 oveq2d φ 0 + 1 N 1 + 1 - 1 = 0 + 1 N 1
85 84 sumeq1d φ l = 0 + 1 N 1 + 1 - 1 1 l 1 A l = l = 0 + 1 N 1 1 l 1 A l
86 oveq1 l = k l 1 = k 1
87 86 oveq2d l = k 1 l 1 = 1 k 1
88 oveq2 l = k A l = A k
89 87 88 oveq12d l = k 1 l 1 A l = 1 k 1 A k
90 89 cbvsumv l = 0 + 1 N 1 1 l 1 A l = k = 0 + 1 N 1 1 k 1 A k
91 85 90 eqtrdi φ l = 0 + 1 N 1 + 1 - 1 1 l 1 A l = k = 0 + 1 N 1 1 k 1 A k
92 83 oveq2d φ 1 N 1 + 1 - 1 = 1 N 1
93 53 oveq2d φ A N - 1 + 1 = A N
94 92 93 oveq12d φ 1 N 1 + 1 - 1 A N - 1 + 1 = 1 N 1 A N
95 91 94 oveq12d φ l = 0 + 1 N 1 + 1 - 1 1 l 1 A l + 1 N 1 + 1 - 1 A N - 1 + 1 = k = 0 + 1 N 1 1 k 1 A k + 1 N 1 A N
96 80 95 eqtrd φ l = 0 + 1 N - 1 + 1 1 l 1 A l = k = 0 + 1 N 1 1 k 1 A k + 1 N 1 A N
97 42 50 96 3eqtrd φ k = 0 N 1 1 k A k + 1 = k = 0 + 1 N 1 1 k 1 A k + 1 N 1 A N
98 nnm1nn0 N N 1 0
99 elnn0uz N 1 0 N 1 0
100 98 99 sylib N N 1 0
101 2 100 syl φ N 1 0
102 oveq2 k = 0 1 k = 1 0
103 exp0 1 1 0 = 1
104 5 103 ax-mp 1 0 = 1
105 102 104 eqtrdi k = 0 1 k = 1
106 oveq2 k = 0 A k = A 0
107 105 106 oveq12d k = 0 1 k A k = 1 A 0
108 101 12 107 fsum1p φ k = 0 N 1 1 k A k = 1 A 0 + k = 0 + 1 N 1 1 k A k
109 1 exp0d φ A 0 = 1
110 109 oveq2d φ 1 A 0 = 1 1
111 1t1e1 1 1 = 1
112 110 111 eqtrdi φ 1 A 0 = 1
113 112 oveq1d φ 1 A 0 + k = 0 + 1 N 1 1 k A k = 1 + k = 0 + 1 N 1 1 k A k
114 fzfid φ 0 + 1 N 1 Fin
115 elfznn k 1 N 1 k
116 5 a1i φ k 1
117 nnnn0 k k 0
118 117 adantl φ k k 0
119 116 118 expcld φ k 1 k
120 1 adantr φ k A
121 120 118 expcld φ k A k
122 119 121 mulcld φ k 1 k A k
123 122 expcom k φ 1 k A k
124 115 123 syl k 1 N 1 φ 1 k A k
125 54 oveq1i 0 + 1 N 1 = 1 N 1
126 124 125 eleq2s k 0 + 1 N 1 φ 1 k A k
127 126 impcom φ k 0 + 1 N 1 1 k A k
128 114 127 fsumcl φ k = 0 + 1 N 1 1 k A k
129 3 128 addcomd φ 1 + k = 0 + 1 N 1 1 k A k = k = 0 + 1 N 1 1 k A k + 1
130 108 113 129 3eqtrd φ k = 0 N 1 1 k A k = k = 0 + 1 N 1 1 k A k + 1
131 97 130 oveq12d φ k = 0 N 1 1 k A k + 1 + k = 0 N 1 1 k A k = k = 0 + 1 N 1 1 k 1 A k + 1 N 1 A N + k = 0 + 1 N 1 1 k A k + 1
132 nnm1nn0 k k 1 0
133 132 adantl φ k k 1 0
134 116 133 expcld φ k 1 k 1
135 134 121 mulcld φ k 1 k 1 A k
136 135 expcom k φ 1 k 1 A k
137 115 136 syl k 1 N 1 φ 1 k 1 A k
138 137 125 eleq2s k 0 + 1 N 1 φ 1 k 1 A k
139 138 impcom φ k 0 + 1 N 1 1 k 1 A k
140 114 139 fsumcl φ k = 0 + 1 N 1 1 k 1 A k
141 5 a1i φ 1
142 2 98 syl φ N 1 0
143 141 142 expcld φ 1 N 1
144 2 nnnn0d φ N 0
145 1 144 expcld φ A N
146 143 145 mulcld φ 1 N 1 A N
147 140 146 addcld φ k = 0 + 1 N 1 1 k 1 A k + 1 N 1 A N
148 147 128 3 addassd φ k = 0 + 1 N 1 1 k 1 A k + 1 N 1 A N + k = 0 + 1 N 1 1 k A k + 1 = k = 0 + 1 N 1 1 k 1 A k + 1 N 1 A N + k = 0 + 1 N 1 1 k A k + 1
149 140 146 addcomd φ k = 0 + 1 N 1 1 k 1 A k + 1 N 1 A N = 1 N 1 A N + k = 0 + 1 N 1 1 k 1 A k
150 149 oveq1d φ k = 0 + 1 N 1 1 k 1 A k + 1 N 1 A N + k = 0 + 1 N 1 1 k A k = 1 N 1 A N + k = 0 + 1 N 1 1 k 1 A k + k = 0 + 1 N 1 1 k A k
151 146 140 128 addassd φ 1 N 1 A N + k = 0 + 1 N 1 1 k 1 A k + k = 0 + 1 N 1 1 k A k = 1 N 1 A N + k = 0 + 1 N 1 1 k 1 A k + k = 0 + 1 N 1 1 k A k
152 nncn k k
153 npcan1 k k - 1 + 1 = k
154 152 153 syl k k - 1 + 1 = k
155 154 eqcomd k k = k - 1 + 1
156 155 oveq2d k 1 k = 1 k - 1 + 1
157 5 a1i k 1
158 157 132 expp1d k 1 k - 1 + 1 = 1 k 1 -1
159 157 132 expcld k 1 k 1
160 159 157 mulcomd k 1 k 1 -1 = -1 1 k 1
161 156 158 160 3eqtrd k 1 k = -1 1 k 1
162 161 oveq2d k 1 k 1 + 1 k = 1 k 1 + -1 1 k 1
163 159 mulm1d k -1 1 k 1 = 1 k 1
164 163 oveq2d k 1 k 1 + -1 1 k 1 = 1 k 1 + 1 k 1
165 159 negidd k 1 k 1 + 1 k 1 = 0
166 162 164 165 3eqtrd k 1 k 1 + 1 k = 0
167 166 adantl φ k 1 k 1 + 1 k = 0
168 167 oveq1d φ k 1 k 1 + 1 k A k = 0 A k
169 134 119 121 adddird φ k 1 k 1 + 1 k A k = 1 k 1 A k + 1 k A k
170 121 mul02d φ k 0 A k = 0
171 168 169 170 3eqtr3d φ k 1 k 1 A k + 1 k A k = 0
172 171 expcom k φ 1 k 1 A k + 1 k A k = 0
173 115 172 syl k 1 N 1 φ 1 k 1 A k + 1 k A k = 0
174 173 125 eleq2s k 0 + 1 N 1 φ 1 k 1 A k + 1 k A k = 0
175 174 impcom φ k 0 + 1 N 1 1 k 1 A k + 1 k A k = 0
176 175 sumeq2dv φ k = 0 + 1 N 1 1 k 1 A k + 1 k A k = k = 0 + 1 N 1 0
177 114 139 127 fsumadd φ k = 0 + 1 N 1 1 k 1 A k + 1 k A k = k = 0 + 1 N 1 1 k 1 A k + k = 0 + 1 N 1 1 k A k
178 114 olcd φ 0 + 1 N 1 1 0 + 1 N 1 Fin
179 sumz 0 + 1 N 1 1 0 + 1 N 1 Fin k = 0 + 1 N 1 0 = 0
180 178 179 syl φ k = 0 + 1 N 1 0 = 0
181 176 177 180 3eqtr3d φ k = 0 + 1 N 1 1 k 1 A k + k = 0 + 1 N 1 1 k A k = 0
182 181 oveq2d φ 1 N 1 A N + k = 0 + 1 N 1 1 k 1 A k + k = 0 + 1 N 1 1 k A k = 1 N 1 A N + 0
183 146 addid1d φ 1 N 1 A N + 0 = 1 N 1 A N
184 182 183 eqtrd φ 1 N 1 A N + k = 0 + 1 N 1 1 k 1 A k + k = 0 + 1 N 1 1 k A k = 1 N 1 A N
185 150 151 184 3eqtrd φ k = 0 + 1 N 1 1 k 1 A k + 1 N 1 A N + k = 0 + 1 N 1 1 k A k = 1 N 1 A N
186 185 oveq1d φ k = 0 + 1 N 1 1 k 1 A k + 1 N 1 A N + k = 0 + 1 N 1 1 k A k + 1 = 1 N 1 A N + 1
187 131 148 186 3eqtr2d φ k = 0 N 1 1 k A k + 1 + k = 0 N 1 1 k A k = 1 N 1 A N + 1
188 14 26 187 3eqtrd φ A + 1 k = 0 N 1 1 k A k = 1 N 1 A N + 1
189 188 eqcomd φ 1 N 1 A N + 1 = A + 1 k = 0 N 1 1 k A k