Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|- X = ( Base ` G ) |
2 |
|
odcl.2 |
|- O = ( od ` G ) |
3 |
|
odid.3 |
|- .x. = ( .g ` G ) |
4 |
|
odid.4 |
|- .0. = ( 0g ` G ) |
5 |
|
simp3 |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) || N ) -> ( O ` A ) || N ) |
6 |
|
dvdszrcl |
|- ( ( O ` A ) || N -> ( ( O ` A ) e. ZZ /\ N e. ZZ ) ) |
7 |
6
|
simprd |
|- ( ( O ` A ) || N -> N e. ZZ ) |
8 |
1 2 3 4
|
oddvds |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
9 |
7 8
|
syl3an3 |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) || N ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
10 |
5 9
|
mpbid |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) || N ) -> ( N .x. A ) = .0. ) |