Metamath Proof Explorer


Theorem oddvdsi

Description: Any group element is annihilated by any multiple of its order. (Contributed by Stefan O'Rear, 5-Sep-2015) (Revised by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses odcl.1 X=BaseG
odcl.2 O=odG
odid.3 ·˙=G
odid.4 0˙=0G
Assertion oddvdsi GGrpAXOANN·˙A=0˙

Proof

Step Hyp Ref Expression
1 odcl.1 X=BaseG
2 odcl.2 O=odG
3 odid.3 ·˙=G
4 odid.4 0˙=0G
5 simp3 GGrpAXOANOAN
6 dvdszrcl OANOAN
7 6 simprd OANN
8 1 2 3 4 oddvds GGrpAXNOANN·˙A=0˙
9 7 8 syl3an3 GGrpAXOANOANN·˙A=0˙
10 5 9 mpbid GGrpAXOANN·˙A=0˙