Metamath Proof Explorer


Theorem odrngle

Description: The order of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypothesis odrngstr.w
|- W = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } )
Assertion odrngle
|- ( .<_ e. V -> .<_ = ( le ` W ) )

Proof

Step Hyp Ref Expression
1 odrngstr.w
 |-  W = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } )
2 1 odrngstr
 |-  W Struct <. 1 , ; 1 2 >.
3 pleid
 |-  le = Slot ( le ` ndx )
4 snsstp2
 |-  { <. ( le ` ndx ) , .<_ >. } C_ { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. }
5 ssun2
 |-  { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } )
6 5 1 sseqtrri
 |-  { <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. , <. ( dist ` ndx ) , D >. } C_ W
7 4 6 sstri
 |-  { <. ( le ` ndx ) , .<_ >. } C_ W
8 2 3 7 strfv
 |-  ( .<_ e. V -> .<_ = ( le ` W ) )