| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2oex |  |-  2o e. _V | 
						
							| 2 | 1 | tpid3 |  |-  2o e. { (/) , 1o , 2o } | 
						
							| 3 |  | df3o2 |  |-  3o = { (/) , 1o , 2o } | 
						
							| 4 | 2 3 | eleqtrri |  |-  2o e. 3o | 
						
							| 5 |  | ordom |  |-  Ord _om | 
						
							| 6 |  | ordirr |  |-  ( Ord _om -> -. _om e. _om ) | 
						
							| 7 |  | 2onn |  |-  2o e. _om | 
						
							| 8 |  | 1oex |  |-  1o e. _V | 
						
							| 9 | 8 | prid2 |  |-  1o e. { (/) , 1o } | 
						
							| 10 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 11 | 9 10 | eleqtrri |  |-  1o e. 2o | 
						
							| 12 |  | nnoeomeqom |  |-  ( ( 2o e. _om /\ 1o e. 2o ) -> ( 2o ^o _om ) = _om ) | 
						
							| 13 | 7 11 12 | mp2an |  |-  ( 2o ^o _om ) = _om | 
						
							| 14 |  | 3onn |  |-  3o e. _om | 
						
							| 15 | 8 | tpid2 |  |-  1o e. { (/) , 1o , 2o } | 
						
							| 16 | 15 3 | eleqtrri |  |-  1o e. 3o | 
						
							| 17 |  | nnoeomeqom |  |-  ( ( 3o e. _om /\ 1o e. 3o ) -> ( 3o ^o _om ) = _om ) | 
						
							| 18 | 14 16 17 | mp2an |  |-  ( 3o ^o _om ) = _om | 
						
							| 19 | 13 18 | eleq12i |  |-  ( ( 2o ^o _om ) e. ( 3o ^o _om ) <-> _om e. _om ) | 
						
							| 20 | 6 19 | sylnibr |  |-  ( Ord _om -> -. ( 2o ^o _om ) e. ( 3o ^o _om ) ) | 
						
							| 21 | 5 20 | ax-mp |  |-  -. ( 2o ^o _om ) e. ( 3o ^o _om ) | 
						
							| 22 | 4 21 | 2th |  |-  ( 2o e. 3o <-> -. ( 2o ^o _om ) e. ( 3o ^o _om ) ) | 
						
							| 23 |  | xor3 |  |-  ( -. ( 2o e. 3o <-> ( 2o ^o _om ) e. ( 3o ^o _om ) ) <-> ( 2o e. 3o <-> -. ( 2o ^o _om ) e. ( 3o ^o _om ) ) ) | 
						
							| 24 | 22 23 | mpbir |  |-  -. ( 2o e. 3o <-> ( 2o ^o _om ) e. ( 3o ^o _om ) ) |