Metamath Proof Explorer


Theorem oenord1ex

Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oenord1ex
|- -. ( 2o e. 3o <-> ( 2o ^o _om ) e. ( 3o ^o _om ) )

Proof

Step Hyp Ref Expression
1 2oex
 |-  2o e. _V
2 1 tpid3
 |-  2o e. { (/) , 1o , 2o }
3 df3o2
 |-  3o = { (/) , 1o , 2o }
4 2 3 eleqtrri
 |-  2o e. 3o
5 ordom
 |-  Ord _om
6 ordirr
 |-  ( Ord _om -> -. _om e. _om )
7 2onn
 |-  2o e. _om
8 1oex
 |-  1o e. _V
9 8 prid2
 |-  1o e. { (/) , 1o }
10 df2o3
 |-  2o = { (/) , 1o }
11 9 10 eleqtrri
 |-  1o e. 2o
12 nnoeomeqom
 |-  ( ( 2o e. _om /\ 1o e. 2o ) -> ( 2o ^o _om ) = _om )
13 7 11 12 mp2an
 |-  ( 2o ^o _om ) = _om
14 3onn
 |-  3o e. _om
15 8 tpid2
 |-  1o e. { (/) , 1o , 2o }
16 15 3 eleqtrri
 |-  1o e. 3o
17 nnoeomeqom
 |-  ( ( 3o e. _om /\ 1o e. 3o ) -> ( 3o ^o _om ) = _om )
18 14 16 17 mp2an
 |-  ( 3o ^o _om ) = _om
19 13 18 eleq12i
 |-  ( ( 2o ^o _om ) e. ( 3o ^o _om ) <-> _om e. _om )
20 6 19 sylnibr
 |-  ( Ord _om -> -. ( 2o ^o _om ) e. ( 3o ^o _om ) )
21 5 20 ax-mp
 |-  -. ( 2o ^o _om ) e. ( 3o ^o _om )
22 4 21 2th
 |-  ( 2o e. 3o <-> -. ( 2o ^o _om ) e. ( 3o ^o _om ) )
23 xor3
 |-  ( -. ( 2o e. 3o <-> ( 2o ^o _om ) e. ( 3o ^o _om ) ) <-> ( 2o e. 3o <-> -. ( 2o ^o _om ) e. ( 3o ^o _om ) ) )
24 22 23 mpbir
 |-  -. ( 2o e. 3o <-> ( 2o ^o _om ) e. ( 3o ^o _om ) )