Step |
Hyp |
Ref |
Expression |
1 |
|
2oex |
|- 2o e. _V |
2 |
1
|
tpid3 |
|- 2o e. { (/) , 1o , 2o } |
3 |
|
df3o2 |
|- 3o = { (/) , 1o , 2o } |
4 |
2 3
|
eleqtrri |
|- 2o e. 3o |
5 |
|
ordom |
|- Ord _om |
6 |
|
ordirr |
|- ( Ord _om -> -. _om e. _om ) |
7 |
|
2onn |
|- 2o e. _om |
8 |
|
1oex |
|- 1o e. _V |
9 |
8
|
prid2 |
|- 1o e. { (/) , 1o } |
10 |
|
df2o3 |
|- 2o = { (/) , 1o } |
11 |
9 10
|
eleqtrri |
|- 1o e. 2o |
12 |
|
nnoeomeqom |
|- ( ( 2o e. _om /\ 1o e. 2o ) -> ( 2o ^o _om ) = _om ) |
13 |
7 11 12
|
mp2an |
|- ( 2o ^o _om ) = _om |
14 |
|
3onn |
|- 3o e. _om |
15 |
8
|
tpid2 |
|- 1o e. { (/) , 1o , 2o } |
16 |
15 3
|
eleqtrri |
|- 1o e. 3o |
17 |
|
nnoeomeqom |
|- ( ( 3o e. _om /\ 1o e. 3o ) -> ( 3o ^o _om ) = _om ) |
18 |
14 16 17
|
mp2an |
|- ( 3o ^o _om ) = _om |
19 |
13 18
|
eleq12i |
|- ( ( 2o ^o _om ) e. ( 3o ^o _om ) <-> _om e. _om ) |
20 |
6 19
|
sylnibr |
|- ( Ord _om -> -. ( 2o ^o _om ) e. ( 3o ^o _om ) ) |
21 |
5 20
|
ax-mp |
|- -. ( 2o ^o _om ) e. ( 3o ^o _om ) |
22 |
4 21
|
2th |
|- ( 2o e. 3o <-> -. ( 2o ^o _om ) e. ( 3o ^o _om ) ) |
23 |
|
xor3 |
|- ( -. ( 2o e. 3o <-> ( 2o ^o _om ) e. ( 3o ^o _om ) ) <-> ( 2o e. 3o <-> -. ( 2o ^o _om ) e. ( 3o ^o _om ) ) ) |
24 |
22 23
|
mpbir |
|- -. ( 2o e. 3o <-> ( 2o ^o _om ) e. ( 3o ^o _om ) ) |