Step |
Hyp |
Ref |
Expression |
1 |
|
2oex |
⊢ 2o ∈ V |
2 |
1
|
tpid3 |
⊢ 2o ∈ { ∅ , 1o , 2o } |
3 |
|
df3o2 |
⊢ 3o = { ∅ , 1o , 2o } |
4 |
2 3
|
eleqtrri |
⊢ 2o ∈ 3o |
5 |
|
ordom |
⊢ Ord ω |
6 |
|
ordirr |
⊢ ( Ord ω → ¬ ω ∈ ω ) |
7 |
|
2onn |
⊢ 2o ∈ ω |
8 |
|
1oex |
⊢ 1o ∈ V |
9 |
8
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
10 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
11 |
9 10
|
eleqtrri |
⊢ 1o ∈ 2o |
12 |
|
nnoeomeqom |
⊢ ( ( 2o ∈ ω ∧ 1o ∈ 2o ) → ( 2o ↑o ω ) = ω ) |
13 |
7 11 12
|
mp2an |
⊢ ( 2o ↑o ω ) = ω |
14 |
|
3onn |
⊢ 3o ∈ ω |
15 |
8
|
tpid2 |
⊢ 1o ∈ { ∅ , 1o , 2o } |
16 |
15 3
|
eleqtrri |
⊢ 1o ∈ 3o |
17 |
|
nnoeomeqom |
⊢ ( ( 3o ∈ ω ∧ 1o ∈ 3o ) → ( 3o ↑o ω ) = ω ) |
18 |
14 16 17
|
mp2an |
⊢ ( 3o ↑o ω ) = ω |
19 |
13 18
|
eleq12i |
⊢ ( ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ↔ ω ∈ ω ) |
20 |
6 19
|
sylnibr |
⊢ ( Ord ω → ¬ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) |
21 |
5 20
|
ax-mp |
⊢ ¬ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) |
22 |
4 21
|
2th |
⊢ ( 2o ∈ 3o ↔ ¬ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) |
23 |
|
xor3 |
⊢ ( ¬ ( 2o ∈ 3o ↔ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) ↔ ( 2o ∈ 3o ↔ ¬ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) ) |
24 |
22 23
|
mpbir |
⊢ ¬ ( 2o ∈ 3o ↔ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) |