Metamath Proof Explorer


Theorem oenord1ex

Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oenord1ex ¬ ( 2o ∈ 3o ↔ ( 2oo ω ) ∈ ( 3oo ω ) )

Proof

Step Hyp Ref Expression
1 2oex 2o ∈ V
2 1 tpid3 2o ∈ { ∅ , 1o , 2o }
3 df3o2 3o = { ∅ , 1o , 2o }
4 2 3 eleqtrri 2o ∈ 3o
5 ordom Ord ω
6 ordirr ( Ord ω → ¬ ω ∈ ω )
7 2onn 2o ∈ ω
8 1oex 1o ∈ V
9 8 prid2 1o ∈ { ∅ , 1o }
10 df2o3 2o = { ∅ , 1o }
11 9 10 eleqtrri 1o ∈ 2o
12 nnoeomeqom ( ( 2o ∈ ω ∧ 1o ∈ 2o ) → ( 2oo ω ) = ω )
13 7 11 12 mp2an ( 2oo ω ) = ω
14 3onn 3o ∈ ω
15 8 tpid2 1o ∈ { ∅ , 1o , 2o }
16 15 3 eleqtrri 1o ∈ 3o
17 nnoeomeqom ( ( 3o ∈ ω ∧ 1o ∈ 3o ) → ( 3oo ω ) = ω )
18 14 16 17 mp2an ( 3oo ω ) = ω
19 13 18 eleq12i ( ( 2oo ω ) ∈ ( 3oo ω ) ↔ ω ∈ ω )
20 6 19 sylnibr ( Ord ω → ¬ ( 2oo ω ) ∈ ( 3oo ω ) )
21 5 20 ax-mp ¬ ( 2oo ω ) ∈ ( 3oo ω )
22 4 21 2th ( 2o ∈ 3o ↔ ¬ ( 2oo ω ) ∈ ( 3oo ω ) )
23 xor3 ( ¬ ( 2o ∈ 3o ↔ ( 2oo ω ) ∈ ( 3oo ω ) ) ↔ ( 2o ∈ 3o ↔ ¬ ( 2oo ω ) ∈ ( 3oo ω ) ) )
24 22 23 mpbir ¬ ( 2o ∈ 3o ↔ ( 2oo ω ) ∈ ( 3oo ω ) )