| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2oex | ⊢ 2o  ∈  V | 
						
							| 2 | 1 | tpid3 | ⊢ 2o  ∈  { ∅ ,  1o ,  2o } | 
						
							| 3 |  | df3o2 | ⊢ 3o  =  { ∅ ,  1o ,  2o } | 
						
							| 4 | 2 3 | eleqtrri | ⊢ 2o  ∈  3o | 
						
							| 5 |  | ordom | ⊢ Ord  ω | 
						
							| 6 |  | ordirr | ⊢ ( Ord  ω  →  ¬  ω  ∈  ω ) | 
						
							| 7 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 8 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 9 | 8 | prid2 | ⊢ 1o  ∈  { ∅ ,  1o } | 
						
							| 10 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 11 | 9 10 | eleqtrri | ⊢ 1o  ∈  2o | 
						
							| 12 |  | nnoeomeqom | ⊢ ( ( 2o  ∈  ω  ∧  1o  ∈  2o )  →  ( 2o  ↑o  ω )  =  ω ) | 
						
							| 13 | 7 11 12 | mp2an | ⊢ ( 2o  ↑o  ω )  =  ω | 
						
							| 14 |  | 3onn | ⊢ 3o  ∈  ω | 
						
							| 15 | 8 | tpid2 | ⊢ 1o  ∈  { ∅ ,  1o ,  2o } | 
						
							| 16 | 15 3 | eleqtrri | ⊢ 1o  ∈  3o | 
						
							| 17 |  | nnoeomeqom | ⊢ ( ( 3o  ∈  ω  ∧  1o  ∈  3o )  →  ( 3o  ↑o  ω )  =  ω ) | 
						
							| 18 | 14 16 17 | mp2an | ⊢ ( 3o  ↑o  ω )  =  ω | 
						
							| 19 | 13 18 | eleq12i | ⊢ ( ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω )  ↔  ω  ∈  ω ) | 
						
							| 20 | 6 19 | sylnibr | ⊢ ( Ord  ω  →  ¬  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) ) | 
						
							| 21 | 5 20 | ax-mp | ⊢ ¬  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) | 
						
							| 22 | 4 21 | 2th | ⊢ ( 2o  ∈  3o  ↔  ¬  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) ) | 
						
							| 23 |  | xor3 | ⊢ ( ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) )  ↔  ( 2o  ∈  3o  ↔  ¬  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) ) ) | 
						
							| 24 | 22 23 | mpbir | ⊢ ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) ) |