Metamath Proof Explorer


Theorem oenord1

Description: When two ordinals (both at least as large as two) are raised to the same power, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of Schloeder p. 11. (Contributed by RP, 4-Feb-2025)

Ref Expression
Assertion oenord1 𝑎 ∈ ( On ∖ 2o ) ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎𝑏 ↔ ( 𝑎o 𝑐 ) ∈ ( 𝑏o 𝑐 ) )

Proof

Step Hyp Ref Expression
1 oenord1ex ¬ ( 2o ∈ 3o ↔ ( 2oo ω ) ∈ ( 3oo ω ) )
2 2on 2o ∈ On
3 1oex 1o ∈ V
4 3 prid2 1o ∈ { ∅ , 1o }
5 df2o3 2o = { ∅ , 1o }
6 4 5 eleqtrri 1o ∈ 2o
7 ondif2 ( 2o ∈ ( On ∖ 2o ) ↔ ( 2o ∈ On ∧ 1o ∈ 2o ) )
8 2 6 7 mpbir2an 2o ∈ ( On ∖ 2o )
9 3on 3o ∈ On
10 3 tpid2 1o ∈ { ∅ , 1o , 2o }
11 df3o2 3o = { ∅ , 1o , 2o }
12 10 11 eleqtrri 1o ∈ 3o
13 ondif2 ( 3o ∈ ( On ∖ 2o ) ↔ ( 3o ∈ On ∧ 1o ∈ 3o ) )
14 9 12 13 mpbir2an 3o ∈ ( On ∖ 2o )
15 omelon ω ∈ On
16 peano1 ∅ ∈ ω
17 ondif1 ( ω ∈ ( On ∖ 1o ) ↔ ( ω ∈ On ∧ ∅ ∈ ω ) )
18 15 16 17 mpbir2an ω ∈ ( On ∖ 1o )
19 oveq2 ( 𝑐 = ω → ( 2oo 𝑐 ) = ( 2oo ω ) )
20 oveq2 ( 𝑐 = ω → ( 3oo 𝑐 ) = ( 3oo ω ) )
21 19 20 eleq12d ( 𝑐 = ω → ( ( 2oo 𝑐 ) ∈ ( 3oo 𝑐 ) ↔ ( 2oo ω ) ∈ ( 3oo ω ) ) )
22 21 bibi2d ( 𝑐 = ω → ( ( 2o ∈ 3o ↔ ( 2oo 𝑐 ) ∈ ( 3oo 𝑐 ) ) ↔ ( 2o ∈ 3o ↔ ( 2oo ω ) ∈ ( 3oo ω ) ) ) )
23 22 notbid ( 𝑐 = ω → ( ¬ ( 2o ∈ 3o ↔ ( 2oo 𝑐 ) ∈ ( 3oo 𝑐 ) ) ↔ ¬ ( 2o ∈ 3o ↔ ( 2oo ω ) ∈ ( 3oo ω ) ) ) )
24 23 rspcev ( ( ω ∈ ( On ∖ 1o ) ∧ ¬ ( 2o ∈ 3o ↔ ( 2oo ω ) ∈ ( 3oo ω ) ) ) → ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 3o ↔ ( 2oo 𝑐 ) ∈ ( 3oo 𝑐 ) ) )
25 18 24 mpan ( ¬ ( 2o ∈ 3o ↔ ( 2oo ω ) ∈ ( 3oo ω ) ) → ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 3o ↔ ( 2oo 𝑐 ) ∈ ( 3oo 𝑐 ) ) )
26 eleq2 ( 𝑏 = 3o → ( 2o𝑏 ↔ 2o ∈ 3o ) )
27 oveq1 ( 𝑏 = 3o → ( 𝑏o 𝑐 ) = ( 3oo 𝑐 ) )
28 27 eleq2d ( 𝑏 = 3o → ( ( 2oo 𝑐 ) ∈ ( 𝑏o 𝑐 ) ↔ ( 2oo 𝑐 ) ∈ ( 3oo 𝑐 ) ) )
29 26 28 bibi12d ( 𝑏 = 3o → ( ( 2o𝑏 ↔ ( 2oo 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) ↔ ( 2o ∈ 3o ↔ ( 2oo 𝑐 ) ∈ ( 3oo 𝑐 ) ) ) )
30 29 notbid ( 𝑏 = 3o → ( ¬ ( 2o𝑏 ↔ ( 2oo 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) ↔ ¬ ( 2o ∈ 3o ↔ ( 2oo 𝑐 ) ∈ ( 3oo 𝑐 ) ) ) )
31 30 rexbidv ( 𝑏 = 3o → ( ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o𝑏 ↔ ( 2oo 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) ↔ ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 3o ↔ ( 2oo 𝑐 ) ∈ ( 3oo 𝑐 ) ) ) )
32 31 rspcev ( ( 3o ∈ ( On ∖ 2o ) ∧ ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 3o ↔ ( 2oo 𝑐 ) ∈ ( 3oo 𝑐 ) ) ) → ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o𝑏 ↔ ( 2oo 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) )
33 14 25 32 sylancr ( ¬ ( 2o ∈ 3o ↔ ( 2oo ω ) ∈ ( 3oo ω ) ) → ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o𝑏 ↔ ( 2oo 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) )
34 eleq1 ( 𝑎 = 2o → ( 𝑎𝑏 ↔ 2o𝑏 ) )
35 oveq1 ( 𝑎 = 2o → ( 𝑎o 𝑐 ) = ( 2oo 𝑐 ) )
36 35 eleq1d ( 𝑎 = 2o → ( ( 𝑎o 𝑐 ) ∈ ( 𝑏o 𝑐 ) ↔ ( 2oo 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) )
37 34 36 bibi12d ( 𝑎 = 2o → ( ( 𝑎𝑏 ↔ ( 𝑎o 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) ↔ ( 2o𝑏 ↔ ( 2oo 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) ) )
38 37 notbid ( 𝑎 = 2o → ( ¬ ( 𝑎𝑏 ↔ ( 𝑎o 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) ↔ ¬ ( 2o𝑏 ↔ ( 2oo 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) ) )
39 38 2rexbidv ( 𝑎 = 2o → ( ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎𝑏 ↔ ( 𝑎o 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) ↔ ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o𝑏 ↔ ( 2oo 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) ) )
40 39 rspcev ( ( 2o ∈ ( On ∖ 2o ) ∧ ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o𝑏 ↔ ( 2oo 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) ) → ∃ 𝑎 ∈ ( On ∖ 2o ) ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎𝑏 ↔ ( 𝑎o 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) )
41 8 33 40 sylancr ( ¬ ( 2o ∈ 3o ↔ ( 2oo ω ) ∈ ( 3oo ω ) ) → ∃ 𝑎 ∈ ( On ∖ 2o ) ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎𝑏 ↔ ( 𝑎o 𝑐 ) ∈ ( 𝑏o 𝑐 ) ) )
42 1 41 ax-mp 𝑎 ∈ ( On ∖ 2o ) ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎𝑏 ↔ ( 𝑎o 𝑐 ) ∈ ( 𝑏o 𝑐 ) )