Step |
Hyp |
Ref |
Expression |
1 |
|
oenord1ex |
⊢ ¬ ( 2o ∈ 3o ↔ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) |
2 |
|
2on |
⊢ 2o ∈ On |
3 |
|
1oex |
⊢ 1o ∈ V |
4 |
3
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
5 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
6 |
4 5
|
eleqtrri |
⊢ 1o ∈ 2o |
7 |
|
ondif2 |
⊢ ( 2o ∈ ( On ∖ 2o ) ↔ ( 2o ∈ On ∧ 1o ∈ 2o ) ) |
8 |
2 6 7
|
mpbir2an |
⊢ 2o ∈ ( On ∖ 2o ) |
9 |
|
3on |
⊢ 3o ∈ On |
10 |
3
|
tpid2 |
⊢ 1o ∈ { ∅ , 1o , 2o } |
11 |
|
df3o2 |
⊢ 3o = { ∅ , 1o , 2o } |
12 |
10 11
|
eleqtrri |
⊢ 1o ∈ 3o |
13 |
|
ondif2 |
⊢ ( 3o ∈ ( On ∖ 2o ) ↔ ( 3o ∈ On ∧ 1o ∈ 3o ) ) |
14 |
9 12 13
|
mpbir2an |
⊢ 3o ∈ ( On ∖ 2o ) |
15 |
|
omelon |
⊢ ω ∈ On |
16 |
|
peano1 |
⊢ ∅ ∈ ω |
17 |
|
ondif1 |
⊢ ( ω ∈ ( On ∖ 1o ) ↔ ( ω ∈ On ∧ ∅ ∈ ω ) ) |
18 |
15 16 17
|
mpbir2an |
⊢ ω ∈ ( On ∖ 1o ) |
19 |
|
oveq2 |
⊢ ( 𝑐 = ω → ( 2o ↑o 𝑐 ) = ( 2o ↑o ω ) ) |
20 |
|
oveq2 |
⊢ ( 𝑐 = ω → ( 3o ↑o 𝑐 ) = ( 3o ↑o ω ) ) |
21 |
19 20
|
eleq12d |
⊢ ( 𝑐 = ω → ( ( 2o ↑o 𝑐 ) ∈ ( 3o ↑o 𝑐 ) ↔ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) ) |
22 |
21
|
bibi2d |
⊢ ( 𝑐 = ω → ( ( 2o ∈ 3o ↔ ( 2o ↑o 𝑐 ) ∈ ( 3o ↑o 𝑐 ) ) ↔ ( 2o ∈ 3o ↔ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) ) ) |
23 |
22
|
notbid |
⊢ ( 𝑐 = ω → ( ¬ ( 2o ∈ 3o ↔ ( 2o ↑o 𝑐 ) ∈ ( 3o ↑o 𝑐 ) ) ↔ ¬ ( 2o ∈ 3o ↔ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) ) ) |
24 |
23
|
rspcev |
⊢ ( ( ω ∈ ( On ∖ 1o ) ∧ ¬ ( 2o ∈ 3o ↔ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) ) → ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 3o ↔ ( 2o ↑o 𝑐 ) ∈ ( 3o ↑o 𝑐 ) ) ) |
25 |
18 24
|
mpan |
⊢ ( ¬ ( 2o ∈ 3o ↔ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) → ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 3o ↔ ( 2o ↑o 𝑐 ) ∈ ( 3o ↑o 𝑐 ) ) ) |
26 |
|
eleq2 |
⊢ ( 𝑏 = 3o → ( 2o ∈ 𝑏 ↔ 2o ∈ 3o ) ) |
27 |
|
oveq1 |
⊢ ( 𝑏 = 3o → ( 𝑏 ↑o 𝑐 ) = ( 3o ↑o 𝑐 ) ) |
28 |
27
|
eleq2d |
⊢ ( 𝑏 = 3o → ( ( 2o ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ↔ ( 2o ↑o 𝑐 ) ∈ ( 3o ↑o 𝑐 ) ) ) |
29 |
26 28
|
bibi12d |
⊢ ( 𝑏 = 3o → ( ( 2o ∈ 𝑏 ↔ ( 2o ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ↔ ( 2o ∈ 3o ↔ ( 2o ↑o 𝑐 ) ∈ ( 3o ↑o 𝑐 ) ) ) ) |
30 |
29
|
notbid |
⊢ ( 𝑏 = 3o → ( ¬ ( 2o ∈ 𝑏 ↔ ( 2o ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ↔ ¬ ( 2o ∈ 3o ↔ ( 2o ↑o 𝑐 ) ∈ ( 3o ↑o 𝑐 ) ) ) ) |
31 |
30
|
rexbidv |
⊢ ( 𝑏 = 3o → ( ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 𝑏 ↔ ( 2o ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ↔ ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 3o ↔ ( 2o ↑o 𝑐 ) ∈ ( 3o ↑o 𝑐 ) ) ) ) |
32 |
31
|
rspcev |
⊢ ( ( 3o ∈ ( On ∖ 2o ) ∧ ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 3o ↔ ( 2o ↑o 𝑐 ) ∈ ( 3o ↑o 𝑐 ) ) ) → ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 𝑏 ↔ ( 2o ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ) |
33 |
14 25 32
|
sylancr |
⊢ ( ¬ ( 2o ∈ 3o ↔ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) → ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 𝑏 ↔ ( 2o ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ) |
34 |
|
eleq1 |
⊢ ( 𝑎 = 2o → ( 𝑎 ∈ 𝑏 ↔ 2o ∈ 𝑏 ) ) |
35 |
|
oveq1 |
⊢ ( 𝑎 = 2o → ( 𝑎 ↑o 𝑐 ) = ( 2o ↑o 𝑐 ) ) |
36 |
35
|
eleq1d |
⊢ ( 𝑎 = 2o → ( ( 𝑎 ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ↔ ( 2o ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ) |
37 |
34 36
|
bibi12d |
⊢ ( 𝑎 = 2o → ( ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ↔ ( 2o ∈ 𝑏 ↔ ( 2o ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ) ) |
38 |
37
|
notbid |
⊢ ( 𝑎 = 2o → ( ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ↔ ¬ ( 2o ∈ 𝑏 ↔ ( 2o ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ) ) |
39 |
38
|
2rexbidv |
⊢ ( 𝑎 = 2o → ( ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ↔ ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 𝑏 ↔ ( 2o ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ) ) |
40 |
39
|
rspcev |
⊢ ( ( 2o ∈ ( On ∖ 2o ) ∧ ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 2o ∈ 𝑏 ↔ ( 2o ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ) → ∃ 𝑎 ∈ ( On ∖ 2o ) ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ) |
41 |
8 33 40
|
sylancr |
⊢ ( ¬ ( 2o ∈ 3o ↔ ( 2o ↑o ω ) ∈ ( 3o ↑o ω ) ) → ∃ 𝑎 ∈ ( On ∖ 2o ) ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) ) |
42 |
1 41
|
ax-mp |
⊢ ∃ 𝑎 ∈ ( On ∖ 2o ) ∃ 𝑏 ∈ ( On ∖ 2o ) ∃ 𝑐 ∈ ( On ∖ 1o ) ¬ ( 𝑎 ∈ 𝑏 ↔ ( 𝑎 ↑o 𝑐 ) ∈ ( 𝑏 ↑o 𝑐 ) ) |