| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oenord1ex | ⊢ ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) ) | 
						
							| 2 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 3 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 4 | 3 | prid2 | ⊢ 1o  ∈  { ∅ ,  1o } | 
						
							| 5 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 6 | 4 5 | eleqtrri | ⊢ 1o  ∈  2o | 
						
							| 7 |  | ondif2 | ⊢ ( 2o  ∈  ( On  ∖  2o )  ↔  ( 2o  ∈  On  ∧  1o  ∈  2o ) ) | 
						
							| 8 | 2 6 7 | mpbir2an | ⊢ 2o  ∈  ( On  ∖  2o ) | 
						
							| 9 |  | 3on | ⊢ 3o  ∈  On | 
						
							| 10 | 3 | tpid2 | ⊢ 1o  ∈  { ∅ ,  1o ,  2o } | 
						
							| 11 |  | df3o2 | ⊢ 3o  =  { ∅ ,  1o ,  2o } | 
						
							| 12 | 10 11 | eleqtrri | ⊢ 1o  ∈  3o | 
						
							| 13 |  | ondif2 | ⊢ ( 3o  ∈  ( On  ∖  2o )  ↔  ( 3o  ∈  On  ∧  1o  ∈  3o ) ) | 
						
							| 14 | 9 12 13 | mpbir2an | ⊢ 3o  ∈  ( On  ∖  2o ) | 
						
							| 15 |  | omelon | ⊢ ω  ∈  On | 
						
							| 16 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 17 |  | ondif1 | ⊢ ( ω  ∈  ( On  ∖  1o )  ↔  ( ω  ∈  On  ∧  ∅  ∈  ω ) ) | 
						
							| 18 | 15 16 17 | mpbir2an | ⊢ ω  ∈  ( On  ∖  1o ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑐  =  ω  →  ( 2o  ↑o  𝑐 )  =  ( 2o  ↑o  ω ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑐  =  ω  →  ( 3o  ↑o  𝑐 )  =  ( 3o  ↑o  ω ) ) | 
						
							| 21 | 19 20 | eleq12d | ⊢ ( 𝑐  =  ω  →  ( ( 2o  ↑o  𝑐 )  ∈  ( 3o  ↑o  𝑐 )  ↔  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) ) ) | 
						
							| 22 | 21 | bibi2d | ⊢ ( 𝑐  =  ω  →  ( ( 2o  ∈  3o  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 3o  ↑o  𝑐 ) )  ↔  ( 2o  ∈  3o  ↔  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) ) ) ) | 
						
							| 23 | 22 | notbid | ⊢ ( 𝑐  =  ω  →  ( ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 3o  ↑o  𝑐 ) )  ↔  ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) ) ) ) | 
						
							| 24 | 23 | rspcev | ⊢ ( ( ω  ∈  ( On  ∖  1o )  ∧  ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) ) )  →  ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 3o  ↑o  𝑐 ) ) ) | 
						
							| 25 | 18 24 | mpan | ⊢ ( ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) )  →  ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 3o  ↑o  𝑐 ) ) ) | 
						
							| 26 |  | eleq2 | ⊢ ( 𝑏  =  3o  →  ( 2o  ∈  𝑏  ↔  2o  ∈  3o ) ) | 
						
							| 27 |  | oveq1 | ⊢ ( 𝑏  =  3o  →  ( 𝑏  ↑o  𝑐 )  =  ( 3o  ↑o  𝑐 ) ) | 
						
							| 28 | 27 | eleq2d | ⊢ ( 𝑏  =  3o  →  ( ( 2o  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 )  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 3o  ↑o  𝑐 ) ) ) | 
						
							| 29 | 26 28 | bibi12d | ⊢ ( 𝑏  =  3o  →  ( ( 2o  ∈  𝑏  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) )  ↔  ( 2o  ∈  3o  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 3o  ↑o  𝑐 ) ) ) ) | 
						
							| 30 | 29 | notbid | ⊢ ( 𝑏  =  3o  →  ( ¬  ( 2o  ∈  𝑏  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) )  ↔  ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 3o  ↑o  𝑐 ) ) ) ) | 
						
							| 31 | 30 | rexbidv | ⊢ ( 𝑏  =  3o  →  ( ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 2o  ∈  𝑏  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) )  ↔  ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 3o  ↑o  𝑐 ) ) ) ) | 
						
							| 32 | 31 | rspcev | ⊢ ( ( 3o  ∈  ( On  ∖  2o )  ∧  ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 3o  ↑o  𝑐 ) ) )  →  ∃ 𝑏  ∈  ( On  ∖  2o ) ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 2o  ∈  𝑏  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) ) ) | 
						
							| 33 | 14 25 32 | sylancr | ⊢ ( ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) )  →  ∃ 𝑏  ∈  ( On  ∖  2o ) ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 2o  ∈  𝑏  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) ) ) | 
						
							| 34 |  | eleq1 | ⊢ ( 𝑎  =  2o  →  ( 𝑎  ∈  𝑏  ↔  2o  ∈  𝑏 ) ) | 
						
							| 35 |  | oveq1 | ⊢ ( 𝑎  =  2o  →  ( 𝑎  ↑o  𝑐 )  =  ( 2o  ↑o  𝑐 ) ) | 
						
							| 36 | 35 | eleq1d | ⊢ ( 𝑎  =  2o  →  ( ( 𝑎  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 )  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) ) ) | 
						
							| 37 | 34 36 | bibi12d | ⊢ ( 𝑎  =  2o  →  ( ( 𝑎  ∈  𝑏  ↔  ( 𝑎  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) )  ↔  ( 2o  ∈  𝑏  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) ) ) ) | 
						
							| 38 | 37 | notbid | ⊢ ( 𝑎  =  2o  →  ( ¬  ( 𝑎  ∈  𝑏  ↔  ( 𝑎  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) )  ↔  ¬  ( 2o  ∈  𝑏  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) ) ) ) | 
						
							| 39 | 38 | 2rexbidv | ⊢ ( 𝑎  =  2o  →  ( ∃ 𝑏  ∈  ( On  ∖  2o ) ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 𝑎  ∈  𝑏  ↔  ( 𝑎  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) )  ↔  ∃ 𝑏  ∈  ( On  ∖  2o ) ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 2o  ∈  𝑏  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) ) ) ) | 
						
							| 40 | 39 | rspcev | ⊢ ( ( 2o  ∈  ( On  ∖  2o )  ∧  ∃ 𝑏  ∈  ( On  ∖  2o ) ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 2o  ∈  𝑏  ↔  ( 2o  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) ) )  →  ∃ 𝑎  ∈  ( On  ∖  2o ) ∃ 𝑏  ∈  ( On  ∖  2o ) ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 𝑎  ∈  𝑏  ↔  ( 𝑎  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) ) ) | 
						
							| 41 | 8 33 40 | sylancr | ⊢ ( ¬  ( 2o  ∈  3o  ↔  ( 2o  ↑o  ω )  ∈  ( 3o  ↑o  ω ) )  →  ∃ 𝑎  ∈  ( On  ∖  2o ) ∃ 𝑏  ∈  ( On  ∖  2o ) ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 𝑎  ∈  𝑏  ↔  ( 𝑎  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) ) ) | 
						
							| 42 | 1 41 | ax-mp | ⊢ ∃ 𝑎  ∈  ( On  ∖  2o ) ∃ 𝑏  ∈  ( On  ∖  2o ) ∃ 𝑐  ∈  ( On  ∖  1o ) ¬  ( 𝑎  ∈  𝑏  ↔  ( 𝑎  ↑o  𝑐 )  ∈  ( 𝑏  ↑o  𝑐 ) ) |