Metamath Proof Explorer


Theorem oaomoencom

Description: Ordinal addition, multiplication, and exponentiation do not generally commute. Theorem 4.1 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oaomoencom ( ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) ∧ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) ∧ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎o 𝑏 ) = ( 𝑏o 𝑎 ) )

Proof

Step Hyp Ref Expression
1 oancom ( 1o +o ω ) ≠ ( ω +o 1o )
2 1 neii ¬ ( 1o +o ω ) = ( ω +o 1o )
3 1on 1o ∈ On
4 omelon ω ∈ On
5 oveq2 ( 𝑏 = ω → ( 1o +o 𝑏 ) = ( 1o +o ω ) )
6 oveq1 ( 𝑏 = ω → ( 𝑏 +o 1o ) = ( ω +o 1o ) )
7 5 6 eqeq12d ( 𝑏 = ω → ( ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ↔ ( 1o +o ω ) = ( ω +o 1o ) ) )
8 7 notbid ( 𝑏 = ω → ( ¬ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ↔ ¬ ( 1o +o ω ) = ( ω +o 1o ) ) )
9 8 rspcev ( ( ω ∈ On ∧ ¬ ( 1o +o ω ) = ( ω +o 1o ) ) → ∃ 𝑏 ∈ On ¬ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) )
10 4 9 mpan ( ¬ ( 1o +o ω ) = ( ω +o 1o ) → ∃ 𝑏 ∈ On ¬ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) )
11 oveq1 ( 𝑎 = 1o → ( 𝑎 +o 𝑏 ) = ( 1o +o 𝑏 ) )
12 oveq2 ( 𝑎 = 1o → ( 𝑏 +o 𝑎 ) = ( 𝑏 +o 1o ) )
13 11 12 eqeq12d ( 𝑎 = 1o → ( ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) ↔ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ) )
14 13 notbid ( 𝑎 = 1o → ( ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) ↔ ¬ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ) )
15 14 rexbidv ( 𝑎 = 1o → ( ∃ 𝑏 ∈ On ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) ↔ ∃ 𝑏 ∈ On ¬ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ) )
16 15 rspcev ( ( 1o ∈ On ∧ ∃ 𝑏 ∈ On ¬ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) )
17 3 10 16 sylancr ( ¬ ( 1o +o ω ) = ( ω +o 1o ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) )
18 2 17 ax-mp 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 )
19 4 4 pm3.2i ( ω ∈ On ∧ ω ∈ On )
20 peano1 ∅ ∈ ω
21 19 20 pm3.2i ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω )
22 oaord1 ( ( ω ∈ On ∧ ω ∈ On ) → ( ∅ ∈ ω ↔ ω ∈ ( ω +o ω ) ) )
23 22 biimpa ( ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ω ∈ ( ω +o ω ) )
24 elneq ( ω ∈ ( ω +o ω ) → ω ≠ ( ω +o ω ) )
25 21 23 24 mp2b ω ≠ ( ω +o ω )
26 2omomeqom ( 2o ·o ω ) = ω
27 df-2o 2o = suc 1o
28 27 oveq2i ( ω ·o 2o ) = ( ω ·o suc 1o )
29 omsuc ( ( ω ∈ On ∧ 1o ∈ On ) → ( ω ·o suc 1o ) = ( ( ω ·o 1o ) +o ω ) )
30 4 3 29 mp2an ( ω ·o suc 1o ) = ( ( ω ·o 1o ) +o ω )
31 om1 ( ω ∈ On → ( ω ·o 1o ) = ω )
32 4 31 ax-mp ( ω ·o 1o ) = ω
33 32 oveq1i ( ( ω ·o 1o ) +o ω ) = ( ω +o ω )
34 28 30 33 3eqtri ( ω ·o 2o ) = ( ω +o ω )
35 26 34 neeq12i ( ( 2o ·o ω ) ≠ ( ω ·o 2o ) ↔ ω ≠ ( ω +o ω ) )
36 25 35 mpbir ( 2o ·o ω ) ≠ ( ω ·o 2o )
37 36 neii ¬ ( 2o ·o ω ) = ( ω ·o 2o )
38 2on 2o ∈ On
39 oveq2 ( 𝑏 = ω → ( 2o ·o 𝑏 ) = ( 2o ·o ω ) )
40 oveq1 ( 𝑏 = ω → ( 𝑏 ·o 2o ) = ( ω ·o 2o ) )
41 39 40 eqeq12d ( 𝑏 = ω → ( ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ↔ ( 2o ·o ω ) = ( ω ·o 2o ) ) )
42 41 notbid ( 𝑏 = ω → ( ¬ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ↔ ¬ ( 2o ·o ω ) = ( ω ·o 2o ) ) )
43 42 rspcev ( ( ω ∈ On ∧ ¬ ( 2o ·o ω ) = ( ω ·o 2o ) ) → ∃ 𝑏 ∈ On ¬ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) )
44 4 43 mpan ( ¬ ( 2o ·o ω ) = ( ω ·o 2o ) → ∃ 𝑏 ∈ On ¬ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) )
45 oveq1 ( 𝑎 = 2o → ( 𝑎 ·o 𝑏 ) = ( 2o ·o 𝑏 ) )
46 oveq2 ( 𝑎 = 2o → ( 𝑏 ·o 𝑎 ) = ( 𝑏 ·o 2o ) )
47 45 46 eqeq12d ( 𝑎 = 2o → ( ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) ↔ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ) )
48 47 notbid ( 𝑎 = 2o → ( ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) ↔ ¬ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ) )
49 48 rexbidv ( 𝑎 = 2o → ( ∃ 𝑏 ∈ On ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) ↔ ∃ 𝑏 ∈ On ¬ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ) )
50 49 rspcev ( ( 2o ∈ On ∧ ∃ 𝑏 ∈ On ¬ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) )
51 38 44 50 sylancr ( ¬ ( 2o ·o ω ) = ( ω ·o 2o ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) )
52 37 51 ax-mp 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 )
53 1onn 1o ∈ ω
54 21 53 pm3.2i ( ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) ∧ 1o ∈ ω )
55 4 31 mp1i ( ( ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) ∧ 1o ∈ ω ) → ( ω ·o 1o ) = ω )
56 omordi ( ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ( 1o ∈ ω → ( ω ·o 1o ) ∈ ( ω ·o ω ) ) )
57 56 imp ( ( ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) ∧ 1o ∈ ω ) → ( ω ·o 1o ) ∈ ( ω ·o ω ) )
58 55 57 eqeltrrd ( ( ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) ∧ 1o ∈ ω ) → ω ∈ ( ω ·o ω ) )
59 elneq ( ω ∈ ( ω ·o ω ) → ω ≠ ( ω ·o ω ) )
60 54 58 59 mp2b ω ≠ ( ω ·o ω )
61 2onn 2o ∈ ω
62 1oex 1o ∈ V
63 62 prid2 1o ∈ { ∅ , 1o }
64 df2o3 2o = { ∅ , 1o }
65 63 64 eleqtrri 1o ∈ 2o
66 nnoeomeqom ( ( 2o ∈ ω ∧ 1o ∈ 2o ) → ( 2oo ω ) = ω )
67 61 65 66 mp2an ( 2oo ω ) = ω
68 27 oveq2i ( ω ↑o 2o ) = ( ω ↑o suc 1o )
69 oesuc ( ( ω ∈ On ∧ 1o ∈ On ) → ( ω ↑o suc 1o ) = ( ( ω ↑o 1o ) ·o ω ) )
70 4 3 69 mp2an ( ω ↑o suc 1o ) = ( ( ω ↑o 1o ) ·o ω )
71 oe1 ( ω ∈ On → ( ω ↑o 1o ) = ω )
72 4 71 ax-mp ( ω ↑o 1o ) = ω
73 72 oveq1i ( ( ω ↑o 1o ) ·o ω ) = ( ω ·o ω )
74 68 70 73 3eqtri ( ω ↑o 2o ) = ( ω ·o ω )
75 67 74 neeq12i ( ( 2oo ω ) ≠ ( ω ↑o 2o ) ↔ ω ≠ ( ω ·o ω ) )
76 60 75 mpbir ( 2oo ω ) ≠ ( ω ↑o 2o )
77 76 neii ¬ ( 2oo ω ) = ( ω ↑o 2o )
78 oveq2 ( 𝑏 = ω → ( 2oo 𝑏 ) = ( 2oo ω ) )
79 oveq1 ( 𝑏 = ω → ( 𝑏o 2o ) = ( ω ↑o 2o ) )
80 78 79 eqeq12d ( 𝑏 = ω → ( ( 2oo 𝑏 ) = ( 𝑏o 2o ) ↔ ( 2oo ω ) = ( ω ↑o 2o ) ) )
81 80 notbid ( 𝑏 = ω → ( ¬ ( 2oo 𝑏 ) = ( 𝑏o 2o ) ↔ ¬ ( 2oo ω ) = ( ω ↑o 2o ) ) )
82 81 rspcev ( ( ω ∈ On ∧ ¬ ( 2oo ω ) = ( ω ↑o 2o ) ) → ∃ 𝑏 ∈ On ¬ ( 2oo 𝑏 ) = ( 𝑏o 2o ) )
83 4 82 mpan ( ¬ ( 2oo ω ) = ( ω ↑o 2o ) → ∃ 𝑏 ∈ On ¬ ( 2oo 𝑏 ) = ( 𝑏o 2o ) )
84 oveq1 ( 𝑎 = 2o → ( 𝑎o 𝑏 ) = ( 2oo 𝑏 ) )
85 oveq2 ( 𝑎 = 2o → ( 𝑏o 𝑎 ) = ( 𝑏o 2o ) )
86 84 85 eqeq12d ( 𝑎 = 2o → ( ( 𝑎o 𝑏 ) = ( 𝑏o 𝑎 ) ↔ ( 2oo 𝑏 ) = ( 𝑏o 2o ) ) )
87 86 notbid ( 𝑎 = 2o → ( ¬ ( 𝑎o 𝑏 ) = ( 𝑏o 𝑎 ) ↔ ¬ ( 2oo 𝑏 ) = ( 𝑏o 2o ) ) )
88 87 rexbidv ( 𝑎 = 2o → ( ∃ 𝑏 ∈ On ¬ ( 𝑎o 𝑏 ) = ( 𝑏o 𝑎 ) ↔ ∃ 𝑏 ∈ On ¬ ( 2oo 𝑏 ) = ( 𝑏o 2o ) ) )
89 88 rspcev ( ( 2o ∈ On ∧ ∃ 𝑏 ∈ On ¬ ( 2oo 𝑏 ) = ( 𝑏o 2o ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎o 𝑏 ) = ( 𝑏o 𝑎 ) )
90 38 83 89 sylancr ( ¬ ( 2oo ω ) = ( ω ↑o 2o ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎o 𝑏 ) = ( 𝑏o 𝑎 ) )
91 77 90 ax-mp 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎o 𝑏 ) = ( 𝑏o 𝑎 )
92 18 52 91 3pm3.2i ( ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) ∧ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) ∧ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎o 𝑏 ) = ( 𝑏o 𝑎 ) )