Step |
Hyp |
Ref |
Expression |
1 |
|
oancom |
⊢ ( 1o +o ω ) ≠ ( ω +o 1o ) |
2 |
1
|
neii |
⊢ ¬ ( 1o +o ω ) = ( ω +o 1o ) |
3 |
|
1on |
⊢ 1o ∈ On |
4 |
|
omelon |
⊢ ω ∈ On |
5 |
|
oveq2 |
⊢ ( 𝑏 = ω → ( 1o +o 𝑏 ) = ( 1o +o ω ) ) |
6 |
|
oveq1 |
⊢ ( 𝑏 = ω → ( 𝑏 +o 1o ) = ( ω +o 1o ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑏 = ω → ( ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ↔ ( 1o +o ω ) = ( ω +o 1o ) ) ) |
8 |
7
|
notbid |
⊢ ( 𝑏 = ω → ( ¬ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ↔ ¬ ( 1o +o ω ) = ( ω +o 1o ) ) ) |
9 |
8
|
rspcev |
⊢ ( ( ω ∈ On ∧ ¬ ( 1o +o ω ) = ( ω +o 1o ) ) → ∃ 𝑏 ∈ On ¬ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ) |
10 |
4 9
|
mpan |
⊢ ( ¬ ( 1o +o ω ) = ( ω +o 1o ) → ∃ 𝑏 ∈ On ¬ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ) |
11 |
|
oveq1 |
⊢ ( 𝑎 = 1o → ( 𝑎 +o 𝑏 ) = ( 1o +o 𝑏 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑎 = 1o → ( 𝑏 +o 𝑎 ) = ( 𝑏 +o 1o ) ) |
13 |
11 12
|
eqeq12d |
⊢ ( 𝑎 = 1o → ( ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) ↔ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ) ) |
14 |
13
|
notbid |
⊢ ( 𝑎 = 1o → ( ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) ↔ ¬ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ) ) |
15 |
14
|
rexbidv |
⊢ ( 𝑎 = 1o → ( ∃ 𝑏 ∈ On ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) ↔ ∃ 𝑏 ∈ On ¬ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ) ) |
16 |
15
|
rspcev |
⊢ ( ( 1o ∈ On ∧ ∃ 𝑏 ∈ On ¬ ( 1o +o 𝑏 ) = ( 𝑏 +o 1o ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) ) |
17 |
3 10 16
|
sylancr |
⊢ ( ¬ ( 1o +o ω ) = ( ω +o 1o ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) ) |
18 |
2 17
|
ax-mp |
⊢ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) |
19 |
4 4
|
pm3.2i |
⊢ ( ω ∈ On ∧ ω ∈ On ) |
20 |
|
peano1 |
⊢ ∅ ∈ ω |
21 |
19 20
|
pm3.2i |
⊢ ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) |
22 |
|
oaord1 |
⊢ ( ( ω ∈ On ∧ ω ∈ On ) → ( ∅ ∈ ω ↔ ω ∈ ( ω +o ω ) ) ) |
23 |
22
|
biimpa |
⊢ ( ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ω ∈ ( ω +o ω ) ) |
24 |
|
elneq |
⊢ ( ω ∈ ( ω +o ω ) → ω ≠ ( ω +o ω ) ) |
25 |
21 23 24
|
mp2b |
⊢ ω ≠ ( ω +o ω ) |
26 |
|
2omomeqom |
⊢ ( 2o ·o ω ) = ω |
27 |
|
df-2o |
⊢ 2o = suc 1o |
28 |
27
|
oveq2i |
⊢ ( ω ·o 2o ) = ( ω ·o suc 1o ) |
29 |
|
omsuc |
⊢ ( ( ω ∈ On ∧ 1o ∈ On ) → ( ω ·o suc 1o ) = ( ( ω ·o 1o ) +o ω ) ) |
30 |
4 3 29
|
mp2an |
⊢ ( ω ·o suc 1o ) = ( ( ω ·o 1o ) +o ω ) |
31 |
|
om1 |
⊢ ( ω ∈ On → ( ω ·o 1o ) = ω ) |
32 |
4 31
|
ax-mp |
⊢ ( ω ·o 1o ) = ω |
33 |
32
|
oveq1i |
⊢ ( ( ω ·o 1o ) +o ω ) = ( ω +o ω ) |
34 |
28 30 33
|
3eqtri |
⊢ ( ω ·o 2o ) = ( ω +o ω ) |
35 |
26 34
|
neeq12i |
⊢ ( ( 2o ·o ω ) ≠ ( ω ·o 2o ) ↔ ω ≠ ( ω +o ω ) ) |
36 |
25 35
|
mpbir |
⊢ ( 2o ·o ω ) ≠ ( ω ·o 2o ) |
37 |
36
|
neii |
⊢ ¬ ( 2o ·o ω ) = ( ω ·o 2o ) |
38 |
|
2on |
⊢ 2o ∈ On |
39 |
|
oveq2 |
⊢ ( 𝑏 = ω → ( 2o ·o 𝑏 ) = ( 2o ·o ω ) ) |
40 |
|
oveq1 |
⊢ ( 𝑏 = ω → ( 𝑏 ·o 2o ) = ( ω ·o 2o ) ) |
41 |
39 40
|
eqeq12d |
⊢ ( 𝑏 = ω → ( ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ↔ ( 2o ·o ω ) = ( ω ·o 2o ) ) ) |
42 |
41
|
notbid |
⊢ ( 𝑏 = ω → ( ¬ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ↔ ¬ ( 2o ·o ω ) = ( ω ·o 2o ) ) ) |
43 |
42
|
rspcev |
⊢ ( ( ω ∈ On ∧ ¬ ( 2o ·o ω ) = ( ω ·o 2o ) ) → ∃ 𝑏 ∈ On ¬ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ) |
44 |
4 43
|
mpan |
⊢ ( ¬ ( 2o ·o ω ) = ( ω ·o 2o ) → ∃ 𝑏 ∈ On ¬ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ) |
45 |
|
oveq1 |
⊢ ( 𝑎 = 2o → ( 𝑎 ·o 𝑏 ) = ( 2o ·o 𝑏 ) ) |
46 |
|
oveq2 |
⊢ ( 𝑎 = 2o → ( 𝑏 ·o 𝑎 ) = ( 𝑏 ·o 2o ) ) |
47 |
45 46
|
eqeq12d |
⊢ ( 𝑎 = 2o → ( ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) ↔ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ) ) |
48 |
47
|
notbid |
⊢ ( 𝑎 = 2o → ( ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) ↔ ¬ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ) ) |
49 |
48
|
rexbidv |
⊢ ( 𝑎 = 2o → ( ∃ 𝑏 ∈ On ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) ↔ ∃ 𝑏 ∈ On ¬ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ) ) |
50 |
49
|
rspcev |
⊢ ( ( 2o ∈ On ∧ ∃ 𝑏 ∈ On ¬ ( 2o ·o 𝑏 ) = ( 𝑏 ·o 2o ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) ) |
51 |
38 44 50
|
sylancr |
⊢ ( ¬ ( 2o ·o ω ) = ( ω ·o 2o ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) ) |
52 |
37 51
|
ax-mp |
⊢ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) |
53 |
|
1onn |
⊢ 1o ∈ ω |
54 |
21 53
|
pm3.2i |
⊢ ( ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) ∧ 1o ∈ ω ) |
55 |
4 31
|
mp1i |
⊢ ( ( ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) ∧ 1o ∈ ω ) → ( ω ·o 1o ) = ω ) |
56 |
|
omordi |
⊢ ( ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ( 1o ∈ ω → ( ω ·o 1o ) ∈ ( ω ·o ω ) ) ) |
57 |
56
|
imp |
⊢ ( ( ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) ∧ 1o ∈ ω ) → ( ω ·o 1o ) ∈ ( ω ·o ω ) ) |
58 |
55 57
|
eqeltrrd |
⊢ ( ( ( ( ω ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) ∧ 1o ∈ ω ) → ω ∈ ( ω ·o ω ) ) |
59 |
|
elneq |
⊢ ( ω ∈ ( ω ·o ω ) → ω ≠ ( ω ·o ω ) ) |
60 |
54 58 59
|
mp2b |
⊢ ω ≠ ( ω ·o ω ) |
61 |
|
2onn |
⊢ 2o ∈ ω |
62 |
|
1oex |
⊢ 1o ∈ V |
63 |
62
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
64 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
65 |
63 64
|
eleqtrri |
⊢ 1o ∈ 2o |
66 |
|
nnoeomeqom |
⊢ ( ( 2o ∈ ω ∧ 1o ∈ 2o ) → ( 2o ↑o ω ) = ω ) |
67 |
61 65 66
|
mp2an |
⊢ ( 2o ↑o ω ) = ω |
68 |
27
|
oveq2i |
⊢ ( ω ↑o 2o ) = ( ω ↑o suc 1o ) |
69 |
|
oesuc |
⊢ ( ( ω ∈ On ∧ 1o ∈ On ) → ( ω ↑o suc 1o ) = ( ( ω ↑o 1o ) ·o ω ) ) |
70 |
4 3 69
|
mp2an |
⊢ ( ω ↑o suc 1o ) = ( ( ω ↑o 1o ) ·o ω ) |
71 |
|
oe1 |
⊢ ( ω ∈ On → ( ω ↑o 1o ) = ω ) |
72 |
4 71
|
ax-mp |
⊢ ( ω ↑o 1o ) = ω |
73 |
72
|
oveq1i |
⊢ ( ( ω ↑o 1o ) ·o ω ) = ( ω ·o ω ) |
74 |
68 70 73
|
3eqtri |
⊢ ( ω ↑o 2o ) = ( ω ·o ω ) |
75 |
67 74
|
neeq12i |
⊢ ( ( 2o ↑o ω ) ≠ ( ω ↑o 2o ) ↔ ω ≠ ( ω ·o ω ) ) |
76 |
60 75
|
mpbir |
⊢ ( 2o ↑o ω ) ≠ ( ω ↑o 2o ) |
77 |
76
|
neii |
⊢ ¬ ( 2o ↑o ω ) = ( ω ↑o 2o ) |
78 |
|
oveq2 |
⊢ ( 𝑏 = ω → ( 2o ↑o 𝑏 ) = ( 2o ↑o ω ) ) |
79 |
|
oveq1 |
⊢ ( 𝑏 = ω → ( 𝑏 ↑o 2o ) = ( ω ↑o 2o ) ) |
80 |
78 79
|
eqeq12d |
⊢ ( 𝑏 = ω → ( ( 2o ↑o 𝑏 ) = ( 𝑏 ↑o 2o ) ↔ ( 2o ↑o ω ) = ( ω ↑o 2o ) ) ) |
81 |
80
|
notbid |
⊢ ( 𝑏 = ω → ( ¬ ( 2o ↑o 𝑏 ) = ( 𝑏 ↑o 2o ) ↔ ¬ ( 2o ↑o ω ) = ( ω ↑o 2o ) ) ) |
82 |
81
|
rspcev |
⊢ ( ( ω ∈ On ∧ ¬ ( 2o ↑o ω ) = ( ω ↑o 2o ) ) → ∃ 𝑏 ∈ On ¬ ( 2o ↑o 𝑏 ) = ( 𝑏 ↑o 2o ) ) |
83 |
4 82
|
mpan |
⊢ ( ¬ ( 2o ↑o ω ) = ( ω ↑o 2o ) → ∃ 𝑏 ∈ On ¬ ( 2o ↑o 𝑏 ) = ( 𝑏 ↑o 2o ) ) |
84 |
|
oveq1 |
⊢ ( 𝑎 = 2o → ( 𝑎 ↑o 𝑏 ) = ( 2o ↑o 𝑏 ) ) |
85 |
|
oveq2 |
⊢ ( 𝑎 = 2o → ( 𝑏 ↑o 𝑎 ) = ( 𝑏 ↑o 2o ) ) |
86 |
84 85
|
eqeq12d |
⊢ ( 𝑎 = 2o → ( ( 𝑎 ↑o 𝑏 ) = ( 𝑏 ↑o 𝑎 ) ↔ ( 2o ↑o 𝑏 ) = ( 𝑏 ↑o 2o ) ) ) |
87 |
86
|
notbid |
⊢ ( 𝑎 = 2o → ( ¬ ( 𝑎 ↑o 𝑏 ) = ( 𝑏 ↑o 𝑎 ) ↔ ¬ ( 2o ↑o 𝑏 ) = ( 𝑏 ↑o 2o ) ) ) |
88 |
87
|
rexbidv |
⊢ ( 𝑎 = 2o → ( ∃ 𝑏 ∈ On ¬ ( 𝑎 ↑o 𝑏 ) = ( 𝑏 ↑o 𝑎 ) ↔ ∃ 𝑏 ∈ On ¬ ( 2o ↑o 𝑏 ) = ( 𝑏 ↑o 2o ) ) ) |
89 |
88
|
rspcev |
⊢ ( ( 2o ∈ On ∧ ∃ 𝑏 ∈ On ¬ ( 2o ↑o 𝑏 ) = ( 𝑏 ↑o 2o ) ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ↑o 𝑏 ) = ( 𝑏 ↑o 𝑎 ) ) |
90 |
38 83 89
|
sylancr |
⊢ ( ¬ ( 2o ↑o ω ) = ( ω ↑o 2o ) → ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ↑o 𝑏 ) = ( 𝑏 ↑o 𝑎 ) ) |
91 |
77 90
|
ax-mp |
⊢ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ↑o 𝑏 ) = ( 𝑏 ↑o 𝑎 ) |
92 |
18 52 91
|
3pm3.2i |
⊢ ( ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 +o 𝑏 ) = ( 𝑏 +o 𝑎 ) ∧ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ·o 𝑏 ) = ( 𝑏 ·o 𝑎 ) ∧ ∃ 𝑎 ∈ On ∃ 𝑏 ∈ On ¬ ( 𝑎 ↑o 𝑏 ) = ( 𝑏 ↑o 𝑎 ) ) |