| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oancom | ⊢ ( 1o  +o  ω )  ≠  ( ω  +o  1o ) | 
						
							| 2 | 1 | neii | ⊢ ¬  ( 1o  +o  ω )  =  ( ω  +o  1o ) | 
						
							| 3 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 4 |  | omelon | ⊢ ω  ∈  On | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑏  =  ω  →  ( 1o  +o  𝑏 )  =  ( 1o  +o  ω ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑏  =  ω  →  ( 𝑏  +o  1o )  =  ( ω  +o  1o ) ) | 
						
							| 7 | 5 6 | eqeq12d | ⊢ ( 𝑏  =  ω  →  ( ( 1o  +o  𝑏 )  =  ( 𝑏  +o  1o )  ↔  ( 1o  +o  ω )  =  ( ω  +o  1o ) ) ) | 
						
							| 8 | 7 | notbid | ⊢ ( 𝑏  =  ω  →  ( ¬  ( 1o  +o  𝑏 )  =  ( 𝑏  +o  1o )  ↔  ¬  ( 1o  +o  ω )  =  ( ω  +o  1o ) ) ) | 
						
							| 9 | 8 | rspcev | ⊢ ( ( ω  ∈  On  ∧  ¬  ( 1o  +o  ω )  =  ( ω  +o  1o ) )  →  ∃ 𝑏  ∈  On ¬  ( 1o  +o  𝑏 )  =  ( 𝑏  +o  1o ) ) | 
						
							| 10 | 4 9 | mpan | ⊢ ( ¬  ( 1o  +o  ω )  =  ( ω  +o  1o )  →  ∃ 𝑏  ∈  On ¬  ( 1o  +o  𝑏 )  =  ( 𝑏  +o  1o ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑎  =  1o  →  ( 𝑎  +o  𝑏 )  =  ( 1o  +o  𝑏 ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑎  =  1o  →  ( 𝑏  +o  𝑎 )  =  ( 𝑏  +o  1o ) ) | 
						
							| 13 | 11 12 | eqeq12d | ⊢ ( 𝑎  =  1o  →  ( ( 𝑎  +o  𝑏 )  =  ( 𝑏  +o  𝑎 )  ↔  ( 1o  +o  𝑏 )  =  ( 𝑏  +o  1o ) ) ) | 
						
							| 14 | 13 | notbid | ⊢ ( 𝑎  =  1o  →  ( ¬  ( 𝑎  +o  𝑏 )  =  ( 𝑏  +o  𝑎 )  ↔  ¬  ( 1o  +o  𝑏 )  =  ( 𝑏  +o  1o ) ) ) | 
						
							| 15 | 14 | rexbidv | ⊢ ( 𝑎  =  1o  →  ( ∃ 𝑏  ∈  On ¬  ( 𝑎  +o  𝑏 )  =  ( 𝑏  +o  𝑎 )  ↔  ∃ 𝑏  ∈  On ¬  ( 1o  +o  𝑏 )  =  ( 𝑏  +o  1o ) ) ) | 
						
							| 16 | 15 | rspcev | ⊢ ( ( 1o  ∈  On  ∧  ∃ 𝑏  ∈  On ¬  ( 1o  +o  𝑏 )  =  ( 𝑏  +o  1o ) )  →  ∃ 𝑎  ∈  On ∃ 𝑏  ∈  On ¬  ( 𝑎  +o  𝑏 )  =  ( 𝑏  +o  𝑎 ) ) | 
						
							| 17 | 3 10 16 | sylancr | ⊢ ( ¬  ( 1o  +o  ω )  =  ( ω  +o  1o )  →  ∃ 𝑎  ∈  On ∃ 𝑏  ∈  On ¬  ( 𝑎  +o  𝑏 )  =  ( 𝑏  +o  𝑎 ) ) | 
						
							| 18 | 2 17 | ax-mp | ⊢ ∃ 𝑎  ∈  On ∃ 𝑏  ∈  On ¬  ( 𝑎  +o  𝑏 )  =  ( 𝑏  +o  𝑎 ) | 
						
							| 19 | 4 4 | pm3.2i | ⊢ ( ω  ∈  On  ∧  ω  ∈  On ) | 
						
							| 20 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 21 | 19 20 | pm3.2i | ⊢ ( ( ω  ∈  On  ∧  ω  ∈  On )  ∧  ∅  ∈  ω ) | 
						
							| 22 |  | oaord1 | ⊢ ( ( ω  ∈  On  ∧  ω  ∈  On )  →  ( ∅  ∈  ω  ↔  ω  ∈  ( ω  +o  ω ) ) ) | 
						
							| 23 | 22 | biimpa | ⊢ ( ( ( ω  ∈  On  ∧  ω  ∈  On )  ∧  ∅  ∈  ω )  →  ω  ∈  ( ω  +o  ω ) ) | 
						
							| 24 |  | elneq | ⊢ ( ω  ∈  ( ω  +o  ω )  →  ω  ≠  ( ω  +o  ω ) ) | 
						
							| 25 | 21 23 24 | mp2b | ⊢ ω  ≠  ( ω  +o  ω ) | 
						
							| 26 |  | 2omomeqom | ⊢ ( 2o  ·o  ω )  =  ω | 
						
							| 27 |  | df-2o | ⊢ 2o  =  suc  1o | 
						
							| 28 | 27 | oveq2i | ⊢ ( ω  ·o  2o )  =  ( ω  ·o  suc  1o ) | 
						
							| 29 |  | omsuc | ⊢ ( ( ω  ∈  On  ∧  1o  ∈  On )  →  ( ω  ·o  suc  1o )  =  ( ( ω  ·o  1o )  +o  ω ) ) | 
						
							| 30 | 4 3 29 | mp2an | ⊢ ( ω  ·o  suc  1o )  =  ( ( ω  ·o  1o )  +o  ω ) | 
						
							| 31 |  | om1 | ⊢ ( ω  ∈  On  →  ( ω  ·o  1o )  =  ω ) | 
						
							| 32 | 4 31 | ax-mp | ⊢ ( ω  ·o  1o )  =  ω | 
						
							| 33 | 32 | oveq1i | ⊢ ( ( ω  ·o  1o )  +o  ω )  =  ( ω  +o  ω ) | 
						
							| 34 | 28 30 33 | 3eqtri | ⊢ ( ω  ·o  2o )  =  ( ω  +o  ω ) | 
						
							| 35 | 26 34 | neeq12i | ⊢ ( ( 2o  ·o  ω )  ≠  ( ω  ·o  2o )  ↔  ω  ≠  ( ω  +o  ω ) ) | 
						
							| 36 | 25 35 | mpbir | ⊢ ( 2o  ·o  ω )  ≠  ( ω  ·o  2o ) | 
						
							| 37 | 36 | neii | ⊢ ¬  ( 2o  ·o  ω )  =  ( ω  ·o  2o ) | 
						
							| 38 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑏  =  ω  →  ( 2o  ·o  𝑏 )  =  ( 2o  ·o  ω ) ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑏  =  ω  →  ( 𝑏  ·o  2o )  =  ( ω  ·o  2o ) ) | 
						
							| 41 | 39 40 | eqeq12d | ⊢ ( 𝑏  =  ω  →  ( ( 2o  ·o  𝑏 )  =  ( 𝑏  ·o  2o )  ↔  ( 2o  ·o  ω )  =  ( ω  ·o  2o ) ) ) | 
						
							| 42 | 41 | notbid | ⊢ ( 𝑏  =  ω  →  ( ¬  ( 2o  ·o  𝑏 )  =  ( 𝑏  ·o  2o )  ↔  ¬  ( 2o  ·o  ω )  =  ( ω  ·o  2o ) ) ) | 
						
							| 43 | 42 | rspcev | ⊢ ( ( ω  ∈  On  ∧  ¬  ( 2o  ·o  ω )  =  ( ω  ·o  2o ) )  →  ∃ 𝑏  ∈  On ¬  ( 2o  ·o  𝑏 )  =  ( 𝑏  ·o  2o ) ) | 
						
							| 44 | 4 43 | mpan | ⊢ ( ¬  ( 2o  ·o  ω )  =  ( ω  ·o  2o )  →  ∃ 𝑏  ∈  On ¬  ( 2o  ·o  𝑏 )  =  ( 𝑏  ·o  2o ) ) | 
						
							| 45 |  | oveq1 | ⊢ ( 𝑎  =  2o  →  ( 𝑎  ·o  𝑏 )  =  ( 2o  ·o  𝑏 ) ) | 
						
							| 46 |  | oveq2 | ⊢ ( 𝑎  =  2o  →  ( 𝑏  ·o  𝑎 )  =  ( 𝑏  ·o  2o ) ) | 
						
							| 47 | 45 46 | eqeq12d | ⊢ ( 𝑎  =  2o  →  ( ( 𝑎  ·o  𝑏 )  =  ( 𝑏  ·o  𝑎 )  ↔  ( 2o  ·o  𝑏 )  =  ( 𝑏  ·o  2o ) ) ) | 
						
							| 48 | 47 | notbid | ⊢ ( 𝑎  =  2o  →  ( ¬  ( 𝑎  ·o  𝑏 )  =  ( 𝑏  ·o  𝑎 )  ↔  ¬  ( 2o  ·o  𝑏 )  =  ( 𝑏  ·o  2o ) ) ) | 
						
							| 49 | 48 | rexbidv | ⊢ ( 𝑎  =  2o  →  ( ∃ 𝑏  ∈  On ¬  ( 𝑎  ·o  𝑏 )  =  ( 𝑏  ·o  𝑎 )  ↔  ∃ 𝑏  ∈  On ¬  ( 2o  ·o  𝑏 )  =  ( 𝑏  ·o  2o ) ) ) | 
						
							| 50 | 49 | rspcev | ⊢ ( ( 2o  ∈  On  ∧  ∃ 𝑏  ∈  On ¬  ( 2o  ·o  𝑏 )  =  ( 𝑏  ·o  2o ) )  →  ∃ 𝑎  ∈  On ∃ 𝑏  ∈  On ¬  ( 𝑎  ·o  𝑏 )  =  ( 𝑏  ·o  𝑎 ) ) | 
						
							| 51 | 38 44 50 | sylancr | ⊢ ( ¬  ( 2o  ·o  ω )  =  ( ω  ·o  2o )  →  ∃ 𝑎  ∈  On ∃ 𝑏  ∈  On ¬  ( 𝑎  ·o  𝑏 )  =  ( 𝑏  ·o  𝑎 ) ) | 
						
							| 52 | 37 51 | ax-mp | ⊢ ∃ 𝑎  ∈  On ∃ 𝑏  ∈  On ¬  ( 𝑎  ·o  𝑏 )  =  ( 𝑏  ·o  𝑎 ) | 
						
							| 53 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 54 | 21 53 | pm3.2i | ⊢ ( ( ( ω  ∈  On  ∧  ω  ∈  On )  ∧  ∅  ∈  ω )  ∧  1o  ∈  ω ) | 
						
							| 55 | 4 31 | mp1i | ⊢ ( ( ( ( ω  ∈  On  ∧  ω  ∈  On )  ∧  ∅  ∈  ω )  ∧  1o  ∈  ω )  →  ( ω  ·o  1o )  =  ω ) | 
						
							| 56 |  | omordi | ⊢ ( ( ( ω  ∈  On  ∧  ω  ∈  On )  ∧  ∅  ∈  ω )  →  ( 1o  ∈  ω  →  ( ω  ·o  1o )  ∈  ( ω  ·o  ω ) ) ) | 
						
							| 57 | 56 | imp | ⊢ ( ( ( ( ω  ∈  On  ∧  ω  ∈  On )  ∧  ∅  ∈  ω )  ∧  1o  ∈  ω )  →  ( ω  ·o  1o )  ∈  ( ω  ·o  ω ) ) | 
						
							| 58 | 55 57 | eqeltrrd | ⊢ ( ( ( ( ω  ∈  On  ∧  ω  ∈  On )  ∧  ∅  ∈  ω )  ∧  1o  ∈  ω )  →  ω  ∈  ( ω  ·o  ω ) ) | 
						
							| 59 |  | elneq | ⊢ ( ω  ∈  ( ω  ·o  ω )  →  ω  ≠  ( ω  ·o  ω ) ) | 
						
							| 60 | 54 58 59 | mp2b | ⊢ ω  ≠  ( ω  ·o  ω ) | 
						
							| 61 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 62 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 63 | 62 | prid2 | ⊢ 1o  ∈  { ∅ ,  1o } | 
						
							| 64 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 65 | 63 64 | eleqtrri | ⊢ 1o  ∈  2o | 
						
							| 66 |  | nnoeomeqom | ⊢ ( ( 2o  ∈  ω  ∧  1o  ∈  2o )  →  ( 2o  ↑o  ω )  =  ω ) | 
						
							| 67 | 61 65 66 | mp2an | ⊢ ( 2o  ↑o  ω )  =  ω | 
						
							| 68 | 27 | oveq2i | ⊢ ( ω  ↑o  2o )  =  ( ω  ↑o  suc  1o ) | 
						
							| 69 |  | oesuc | ⊢ ( ( ω  ∈  On  ∧  1o  ∈  On )  →  ( ω  ↑o  suc  1o )  =  ( ( ω  ↑o  1o )  ·o  ω ) ) | 
						
							| 70 | 4 3 69 | mp2an | ⊢ ( ω  ↑o  suc  1o )  =  ( ( ω  ↑o  1o )  ·o  ω ) | 
						
							| 71 |  | oe1 | ⊢ ( ω  ∈  On  →  ( ω  ↑o  1o )  =  ω ) | 
						
							| 72 | 4 71 | ax-mp | ⊢ ( ω  ↑o  1o )  =  ω | 
						
							| 73 | 72 | oveq1i | ⊢ ( ( ω  ↑o  1o )  ·o  ω )  =  ( ω  ·o  ω ) | 
						
							| 74 | 68 70 73 | 3eqtri | ⊢ ( ω  ↑o  2o )  =  ( ω  ·o  ω ) | 
						
							| 75 | 67 74 | neeq12i | ⊢ ( ( 2o  ↑o  ω )  ≠  ( ω  ↑o  2o )  ↔  ω  ≠  ( ω  ·o  ω ) ) | 
						
							| 76 | 60 75 | mpbir | ⊢ ( 2o  ↑o  ω )  ≠  ( ω  ↑o  2o ) | 
						
							| 77 | 76 | neii | ⊢ ¬  ( 2o  ↑o  ω )  =  ( ω  ↑o  2o ) | 
						
							| 78 |  | oveq2 | ⊢ ( 𝑏  =  ω  →  ( 2o  ↑o  𝑏 )  =  ( 2o  ↑o  ω ) ) | 
						
							| 79 |  | oveq1 | ⊢ ( 𝑏  =  ω  →  ( 𝑏  ↑o  2o )  =  ( ω  ↑o  2o ) ) | 
						
							| 80 | 78 79 | eqeq12d | ⊢ ( 𝑏  =  ω  →  ( ( 2o  ↑o  𝑏 )  =  ( 𝑏  ↑o  2o )  ↔  ( 2o  ↑o  ω )  =  ( ω  ↑o  2o ) ) ) | 
						
							| 81 | 80 | notbid | ⊢ ( 𝑏  =  ω  →  ( ¬  ( 2o  ↑o  𝑏 )  =  ( 𝑏  ↑o  2o )  ↔  ¬  ( 2o  ↑o  ω )  =  ( ω  ↑o  2o ) ) ) | 
						
							| 82 | 81 | rspcev | ⊢ ( ( ω  ∈  On  ∧  ¬  ( 2o  ↑o  ω )  =  ( ω  ↑o  2o ) )  →  ∃ 𝑏  ∈  On ¬  ( 2o  ↑o  𝑏 )  =  ( 𝑏  ↑o  2o ) ) | 
						
							| 83 | 4 82 | mpan | ⊢ ( ¬  ( 2o  ↑o  ω )  =  ( ω  ↑o  2o )  →  ∃ 𝑏  ∈  On ¬  ( 2o  ↑o  𝑏 )  =  ( 𝑏  ↑o  2o ) ) | 
						
							| 84 |  | oveq1 | ⊢ ( 𝑎  =  2o  →  ( 𝑎  ↑o  𝑏 )  =  ( 2o  ↑o  𝑏 ) ) | 
						
							| 85 |  | oveq2 | ⊢ ( 𝑎  =  2o  →  ( 𝑏  ↑o  𝑎 )  =  ( 𝑏  ↑o  2o ) ) | 
						
							| 86 | 84 85 | eqeq12d | ⊢ ( 𝑎  =  2o  →  ( ( 𝑎  ↑o  𝑏 )  =  ( 𝑏  ↑o  𝑎 )  ↔  ( 2o  ↑o  𝑏 )  =  ( 𝑏  ↑o  2o ) ) ) | 
						
							| 87 | 86 | notbid | ⊢ ( 𝑎  =  2o  →  ( ¬  ( 𝑎  ↑o  𝑏 )  =  ( 𝑏  ↑o  𝑎 )  ↔  ¬  ( 2o  ↑o  𝑏 )  =  ( 𝑏  ↑o  2o ) ) ) | 
						
							| 88 | 87 | rexbidv | ⊢ ( 𝑎  =  2o  →  ( ∃ 𝑏  ∈  On ¬  ( 𝑎  ↑o  𝑏 )  =  ( 𝑏  ↑o  𝑎 )  ↔  ∃ 𝑏  ∈  On ¬  ( 2o  ↑o  𝑏 )  =  ( 𝑏  ↑o  2o ) ) ) | 
						
							| 89 | 88 | rspcev | ⊢ ( ( 2o  ∈  On  ∧  ∃ 𝑏  ∈  On ¬  ( 2o  ↑o  𝑏 )  =  ( 𝑏  ↑o  2o ) )  →  ∃ 𝑎  ∈  On ∃ 𝑏  ∈  On ¬  ( 𝑎  ↑o  𝑏 )  =  ( 𝑏  ↑o  𝑎 ) ) | 
						
							| 90 | 38 83 89 | sylancr | ⊢ ( ¬  ( 2o  ↑o  ω )  =  ( ω  ↑o  2o )  →  ∃ 𝑎  ∈  On ∃ 𝑏  ∈  On ¬  ( 𝑎  ↑o  𝑏 )  =  ( 𝑏  ↑o  𝑎 ) ) | 
						
							| 91 | 77 90 | ax-mp | ⊢ ∃ 𝑎  ∈  On ∃ 𝑏  ∈  On ¬  ( 𝑎  ↑o  𝑏 )  =  ( 𝑏  ↑o  𝑎 ) | 
						
							| 92 | 18 52 91 | 3pm3.2i | ⊢ ( ∃ 𝑎  ∈  On ∃ 𝑏  ∈  On ¬  ( 𝑎  +o  𝑏 )  =  ( 𝑏  +o  𝑎 )  ∧  ∃ 𝑎  ∈  On ∃ 𝑏  ∈  On ¬  ( 𝑎  ·o  𝑏 )  =  ( 𝑏  ·o  𝑎 )  ∧  ∃ 𝑎  ∈  On ∃ 𝑏  ∈  On ¬  ( 𝑎  ↑o  𝑏 )  =  ( 𝑏  ↑o  𝑎 ) ) |