Step |
Hyp |
Ref |
Expression |
1 |
|
oancom |
|- ( 1o +o _om ) =/= ( _om +o 1o ) |
2 |
1
|
neii |
|- -. ( 1o +o _om ) = ( _om +o 1o ) |
3 |
|
1on |
|- 1o e. On |
4 |
|
omelon |
|- _om e. On |
5 |
|
oveq2 |
|- ( b = _om -> ( 1o +o b ) = ( 1o +o _om ) ) |
6 |
|
oveq1 |
|- ( b = _om -> ( b +o 1o ) = ( _om +o 1o ) ) |
7 |
5 6
|
eqeq12d |
|- ( b = _om -> ( ( 1o +o b ) = ( b +o 1o ) <-> ( 1o +o _om ) = ( _om +o 1o ) ) ) |
8 |
7
|
notbid |
|- ( b = _om -> ( -. ( 1o +o b ) = ( b +o 1o ) <-> -. ( 1o +o _om ) = ( _om +o 1o ) ) ) |
9 |
8
|
rspcev |
|- ( ( _om e. On /\ -. ( 1o +o _om ) = ( _om +o 1o ) ) -> E. b e. On -. ( 1o +o b ) = ( b +o 1o ) ) |
10 |
4 9
|
mpan |
|- ( -. ( 1o +o _om ) = ( _om +o 1o ) -> E. b e. On -. ( 1o +o b ) = ( b +o 1o ) ) |
11 |
|
oveq1 |
|- ( a = 1o -> ( a +o b ) = ( 1o +o b ) ) |
12 |
|
oveq2 |
|- ( a = 1o -> ( b +o a ) = ( b +o 1o ) ) |
13 |
11 12
|
eqeq12d |
|- ( a = 1o -> ( ( a +o b ) = ( b +o a ) <-> ( 1o +o b ) = ( b +o 1o ) ) ) |
14 |
13
|
notbid |
|- ( a = 1o -> ( -. ( a +o b ) = ( b +o a ) <-> -. ( 1o +o b ) = ( b +o 1o ) ) ) |
15 |
14
|
rexbidv |
|- ( a = 1o -> ( E. b e. On -. ( a +o b ) = ( b +o a ) <-> E. b e. On -. ( 1o +o b ) = ( b +o 1o ) ) ) |
16 |
15
|
rspcev |
|- ( ( 1o e. On /\ E. b e. On -. ( 1o +o b ) = ( b +o 1o ) ) -> E. a e. On E. b e. On -. ( a +o b ) = ( b +o a ) ) |
17 |
3 10 16
|
sylancr |
|- ( -. ( 1o +o _om ) = ( _om +o 1o ) -> E. a e. On E. b e. On -. ( a +o b ) = ( b +o a ) ) |
18 |
2 17
|
ax-mp |
|- E. a e. On E. b e. On -. ( a +o b ) = ( b +o a ) |
19 |
4 4
|
pm3.2i |
|- ( _om e. On /\ _om e. On ) |
20 |
|
peano1 |
|- (/) e. _om |
21 |
19 20
|
pm3.2i |
|- ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) |
22 |
|
oaord1 |
|- ( ( _om e. On /\ _om e. On ) -> ( (/) e. _om <-> _om e. ( _om +o _om ) ) ) |
23 |
22
|
biimpa |
|- ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) -> _om e. ( _om +o _om ) ) |
24 |
|
elneq |
|- ( _om e. ( _om +o _om ) -> _om =/= ( _om +o _om ) ) |
25 |
21 23 24
|
mp2b |
|- _om =/= ( _om +o _om ) |
26 |
|
2omomeqom |
|- ( 2o .o _om ) = _om |
27 |
|
df-2o |
|- 2o = suc 1o |
28 |
27
|
oveq2i |
|- ( _om .o 2o ) = ( _om .o suc 1o ) |
29 |
|
omsuc |
|- ( ( _om e. On /\ 1o e. On ) -> ( _om .o suc 1o ) = ( ( _om .o 1o ) +o _om ) ) |
30 |
4 3 29
|
mp2an |
|- ( _om .o suc 1o ) = ( ( _om .o 1o ) +o _om ) |
31 |
|
om1 |
|- ( _om e. On -> ( _om .o 1o ) = _om ) |
32 |
4 31
|
ax-mp |
|- ( _om .o 1o ) = _om |
33 |
32
|
oveq1i |
|- ( ( _om .o 1o ) +o _om ) = ( _om +o _om ) |
34 |
28 30 33
|
3eqtri |
|- ( _om .o 2o ) = ( _om +o _om ) |
35 |
26 34
|
neeq12i |
|- ( ( 2o .o _om ) =/= ( _om .o 2o ) <-> _om =/= ( _om +o _om ) ) |
36 |
25 35
|
mpbir |
|- ( 2o .o _om ) =/= ( _om .o 2o ) |
37 |
36
|
neii |
|- -. ( 2o .o _om ) = ( _om .o 2o ) |
38 |
|
2on |
|- 2o e. On |
39 |
|
oveq2 |
|- ( b = _om -> ( 2o .o b ) = ( 2o .o _om ) ) |
40 |
|
oveq1 |
|- ( b = _om -> ( b .o 2o ) = ( _om .o 2o ) ) |
41 |
39 40
|
eqeq12d |
|- ( b = _om -> ( ( 2o .o b ) = ( b .o 2o ) <-> ( 2o .o _om ) = ( _om .o 2o ) ) ) |
42 |
41
|
notbid |
|- ( b = _om -> ( -. ( 2o .o b ) = ( b .o 2o ) <-> -. ( 2o .o _om ) = ( _om .o 2o ) ) ) |
43 |
42
|
rspcev |
|- ( ( _om e. On /\ -. ( 2o .o _om ) = ( _om .o 2o ) ) -> E. b e. On -. ( 2o .o b ) = ( b .o 2o ) ) |
44 |
4 43
|
mpan |
|- ( -. ( 2o .o _om ) = ( _om .o 2o ) -> E. b e. On -. ( 2o .o b ) = ( b .o 2o ) ) |
45 |
|
oveq1 |
|- ( a = 2o -> ( a .o b ) = ( 2o .o b ) ) |
46 |
|
oveq2 |
|- ( a = 2o -> ( b .o a ) = ( b .o 2o ) ) |
47 |
45 46
|
eqeq12d |
|- ( a = 2o -> ( ( a .o b ) = ( b .o a ) <-> ( 2o .o b ) = ( b .o 2o ) ) ) |
48 |
47
|
notbid |
|- ( a = 2o -> ( -. ( a .o b ) = ( b .o a ) <-> -. ( 2o .o b ) = ( b .o 2o ) ) ) |
49 |
48
|
rexbidv |
|- ( a = 2o -> ( E. b e. On -. ( a .o b ) = ( b .o a ) <-> E. b e. On -. ( 2o .o b ) = ( b .o 2o ) ) ) |
50 |
49
|
rspcev |
|- ( ( 2o e. On /\ E. b e. On -. ( 2o .o b ) = ( b .o 2o ) ) -> E. a e. On E. b e. On -. ( a .o b ) = ( b .o a ) ) |
51 |
38 44 50
|
sylancr |
|- ( -. ( 2o .o _om ) = ( _om .o 2o ) -> E. a e. On E. b e. On -. ( a .o b ) = ( b .o a ) ) |
52 |
37 51
|
ax-mp |
|- E. a e. On E. b e. On -. ( a .o b ) = ( b .o a ) |
53 |
|
1onn |
|- 1o e. _om |
54 |
21 53
|
pm3.2i |
|- ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) /\ 1o e. _om ) |
55 |
4 31
|
mp1i |
|- ( ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) /\ 1o e. _om ) -> ( _om .o 1o ) = _om ) |
56 |
|
omordi |
|- ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) -> ( 1o e. _om -> ( _om .o 1o ) e. ( _om .o _om ) ) ) |
57 |
56
|
imp |
|- ( ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) /\ 1o e. _om ) -> ( _om .o 1o ) e. ( _om .o _om ) ) |
58 |
55 57
|
eqeltrrd |
|- ( ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) /\ 1o e. _om ) -> _om e. ( _om .o _om ) ) |
59 |
|
elneq |
|- ( _om e. ( _om .o _om ) -> _om =/= ( _om .o _om ) ) |
60 |
54 58 59
|
mp2b |
|- _om =/= ( _om .o _om ) |
61 |
|
2onn |
|- 2o e. _om |
62 |
|
1oex |
|- 1o e. _V |
63 |
62
|
prid2 |
|- 1o e. { (/) , 1o } |
64 |
|
df2o3 |
|- 2o = { (/) , 1o } |
65 |
63 64
|
eleqtrri |
|- 1o e. 2o |
66 |
|
nnoeomeqom |
|- ( ( 2o e. _om /\ 1o e. 2o ) -> ( 2o ^o _om ) = _om ) |
67 |
61 65 66
|
mp2an |
|- ( 2o ^o _om ) = _om |
68 |
27
|
oveq2i |
|- ( _om ^o 2o ) = ( _om ^o suc 1o ) |
69 |
|
oesuc |
|- ( ( _om e. On /\ 1o e. On ) -> ( _om ^o suc 1o ) = ( ( _om ^o 1o ) .o _om ) ) |
70 |
4 3 69
|
mp2an |
|- ( _om ^o suc 1o ) = ( ( _om ^o 1o ) .o _om ) |
71 |
|
oe1 |
|- ( _om e. On -> ( _om ^o 1o ) = _om ) |
72 |
4 71
|
ax-mp |
|- ( _om ^o 1o ) = _om |
73 |
72
|
oveq1i |
|- ( ( _om ^o 1o ) .o _om ) = ( _om .o _om ) |
74 |
68 70 73
|
3eqtri |
|- ( _om ^o 2o ) = ( _om .o _om ) |
75 |
67 74
|
neeq12i |
|- ( ( 2o ^o _om ) =/= ( _om ^o 2o ) <-> _om =/= ( _om .o _om ) ) |
76 |
60 75
|
mpbir |
|- ( 2o ^o _om ) =/= ( _om ^o 2o ) |
77 |
76
|
neii |
|- -. ( 2o ^o _om ) = ( _om ^o 2o ) |
78 |
|
oveq2 |
|- ( b = _om -> ( 2o ^o b ) = ( 2o ^o _om ) ) |
79 |
|
oveq1 |
|- ( b = _om -> ( b ^o 2o ) = ( _om ^o 2o ) ) |
80 |
78 79
|
eqeq12d |
|- ( b = _om -> ( ( 2o ^o b ) = ( b ^o 2o ) <-> ( 2o ^o _om ) = ( _om ^o 2o ) ) ) |
81 |
80
|
notbid |
|- ( b = _om -> ( -. ( 2o ^o b ) = ( b ^o 2o ) <-> -. ( 2o ^o _om ) = ( _om ^o 2o ) ) ) |
82 |
81
|
rspcev |
|- ( ( _om e. On /\ -. ( 2o ^o _om ) = ( _om ^o 2o ) ) -> E. b e. On -. ( 2o ^o b ) = ( b ^o 2o ) ) |
83 |
4 82
|
mpan |
|- ( -. ( 2o ^o _om ) = ( _om ^o 2o ) -> E. b e. On -. ( 2o ^o b ) = ( b ^o 2o ) ) |
84 |
|
oveq1 |
|- ( a = 2o -> ( a ^o b ) = ( 2o ^o b ) ) |
85 |
|
oveq2 |
|- ( a = 2o -> ( b ^o a ) = ( b ^o 2o ) ) |
86 |
84 85
|
eqeq12d |
|- ( a = 2o -> ( ( a ^o b ) = ( b ^o a ) <-> ( 2o ^o b ) = ( b ^o 2o ) ) ) |
87 |
86
|
notbid |
|- ( a = 2o -> ( -. ( a ^o b ) = ( b ^o a ) <-> -. ( 2o ^o b ) = ( b ^o 2o ) ) ) |
88 |
87
|
rexbidv |
|- ( a = 2o -> ( E. b e. On -. ( a ^o b ) = ( b ^o a ) <-> E. b e. On -. ( 2o ^o b ) = ( b ^o 2o ) ) ) |
89 |
88
|
rspcev |
|- ( ( 2o e. On /\ E. b e. On -. ( 2o ^o b ) = ( b ^o 2o ) ) -> E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a ) ) |
90 |
38 83 89
|
sylancr |
|- ( -. ( 2o ^o _om ) = ( _om ^o 2o ) -> E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a ) ) |
91 |
77 90
|
ax-mp |
|- E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a ) |
92 |
18 52 91
|
3pm3.2i |
|- ( E. a e. On E. b e. On -. ( a +o b ) = ( b +o a ) /\ E. a e. On E. b e. On -. ( a .o b ) = ( b .o a ) /\ E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a ) ) |