| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oancom |  |-  ( 1o +o _om ) =/= ( _om +o 1o ) | 
						
							| 2 | 1 | neii |  |-  -. ( 1o +o _om ) = ( _om +o 1o ) | 
						
							| 3 |  | 1on |  |-  1o e. On | 
						
							| 4 |  | omelon |  |-  _om e. On | 
						
							| 5 |  | oveq2 |  |-  ( b = _om -> ( 1o +o b ) = ( 1o +o _om ) ) | 
						
							| 6 |  | oveq1 |  |-  ( b = _om -> ( b +o 1o ) = ( _om +o 1o ) ) | 
						
							| 7 | 5 6 | eqeq12d |  |-  ( b = _om -> ( ( 1o +o b ) = ( b +o 1o ) <-> ( 1o +o _om ) = ( _om +o 1o ) ) ) | 
						
							| 8 | 7 | notbid |  |-  ( b = _om -> ( -. ( 1o +o b ) = ( b +o 1o ) <-> -. ( 1o +o _om ) = ( _om +o 1o ) ) ) | 
						
							| 9 | 8 | rspcev |  |-  ( ( _om e. On /\ -. ( 1o +o _om ) = ( _om +o 1o ) ) -> E. b e. On -. ( 1o +o b ) = ( b +o 1o ) ) | 
						
							| 10 | 4 9 | mpan |  |-  ( -. ( 1o +o _om ) = ( _om +o 1o ) -> E. b e. On -. ( 1o +o b ) = ( b +o 1o ) ) | 
						
							| 11 |  | oveq1 |  |-  ( a = 1o -> ( a +o b ) = ( 1o +o b ) ) | 
						
							| 12 |  | oveq2 |  |-  ( a = 1o -> ( b +o a ) = ( b +o 1o ) ) | 
						
							| 13 | 11 12 | eqeq12d |  |-  ( a = 1o -> ( ( a +o b ) = ( b +o a ) <-> ( 1o +o b ) = ( b +o 1o ) ) ) | 
						
							| 14 | 13 | notbid |  |-  ( a = 1o -> ( -. ( a +o b ) = ( b +o a ) <-> -. ( 1o +o b ) = ( b +o 1o ) ) ) | 
						
							| 15 | 14 | rexbidv |  |-  ( a = 1o -> ( E. b e. On -. ( a +o b ) = ( b +o a ) <-> E. b e. On -. ( 1o +o b ) = ( b +o 1o ) ) ) | 
						
							| 16 | 15 | rspcev |  |-  ( ( 1o e. On /\ E. b e. On -. ( 1o +o b ) = ( b +o 1o ) ) -> E. a e. On E. b e. On -. ( a +o b ) = ( b +o a ) ) | 
						
							| 17 | 3 10 16 | sylancr |  |-  ( -. ( 1o +o _om ) = ( _om +o 1o ) -> E. a e. On E. b e. On -. ( a +o b ) = ( b +o a ) ) | 
						
							| 18 | 2 17 | ax-mp |  |-  E. a e. On E. b e. On -. ( a +o b ) = ( b +o a ) | 
						
							| 19 | 4 4 | pm3.2i |  |-  ( _om e. On /\ _om e. On ) | 
						
							| 20 |  | peano1 |  |-  (/) e. _om | 
						
							| 21 | 19 20 | pm3.2i |  |-  ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) | 
						
							| 22 |  | oaord1 |  |-  ( ( _om e. On /\ _om e. On ) -> ( (/) e. _om <-> _om e. ( _om +o _om ) ) ) | 
						
							| 23 | 22 | biimpa |  |-  ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) -> _om e. ( _om +o _om ) ) | 
						
							| 24 |  | elneq |  |-  ( _om e. ( _om +o _om ) -> _om =/= ( _om +o _om ) ) | 
						
							| 25 | 21 23 24 | mp2b |  |-  _om =/= ( _om +o _om ) | 
						
							| 26 |  | 2omomeqom |  |-  ( 2o .o _om ) = _om | 
						
							| 27 |  | df-2o |  |-  2o = suc 1o | 
						
							| 28 | 27 | oveq2i |  |-  ( _om .o 2o ) = ( _om .o suc 1o ) | 
						
							| 29 |  | omsuc |  |-  ( ( _om e. On /\ 1o e. On ) -> ( _om .o suc 1o ) = ( ( _om .o 1o ) +o _om ) ) | 
						
							| 30 | 4 3 29 | mp2an |  |-  ( _om .o suc 1o ) = ( ( _om .o 1o ) +o _om ) | 
						
							| 31 |  | om1 |  |-  ( _om e. On -> ( _om .o 1o ) = _om ) | 
						
							| 32 | 4 31 | ax-mp |  |-  ( _om .o 1o ) = _om | 
						
							| 33 | 32 | oveq1i |  |-  ( ( _om .o 1o ) +o _om ) = ( _om +o _om ) | 
						
							| 34 | 28 30 33 | 3eqtri |  |-  ( _om .o 2o ) = ( _om +o _om ) | 
						
							| 35 | 26 34 | neeq12i |  |-  ( ( 2o .o _om ) =/= ( _om .o 2o ) <-> _om =/= ( _om +o _om ) ) | 
						
							| 36 | 25 35 | mpbir |  |-  ( 2o .o _om ) =/= ( _om .o 2o ) | 
						
							| 37 | 36 | neii |  |-  -. ( 2o .o _om ) = ( _om .o 2o ) | 
						
							| 38 |  | 2on |  |-  2o e. On | 
						
							| 39 |  | oveq2 |  |-  ( b = _om -> ( 2o .o b ) = ( 2o .o _om ) ) | 
						
							| 40 |  | oveq1 |  |-  ( b = _om -> ( b .o 2o ) = ( _om .o 2o ) ) | 
						
							| 41 | 39 40 | eqeq12d |  |-  ( b = _om -> ( ( 2o .o b ) = ( b .o 2o ) <-> ( 2o .o _om ) = ( _om .o 2o ) ) ) | 
						
							| 42 | 41 | notbid |  |-  ( b = _om -> ( -. ( 2o .o b ) = ( b .o 2o ) <-> -. ( 2o .o _om ) = ( _om .o 2o ) ) ) | 
						
							| 43 | 42 | rspcev |  |-  ( ( _om e. On /\ -. ( 2o .o _om ) = ( _om .o 2o ) ) -> E. b e. On -. ( 2o .o b ) = ( b .o 2o ) ) | 
						
							| 44 | 4 43 | mpan |  |-  ( -. ( 2o .o _om ) = ( _om .o 2o ) -> E. b e. On -. ( 2o .o b ) = ( b .o 2o ) ) | 
						
							| 45 |  | oveq1 |  |-  ( a = 2o -> ( a .o b ) = ( 2o .o b ) ) | 
						
							| 46 |  | oveq2 |  |-  ( a = 2o -> ( b .o a ) = ( b .o 2o ) ) | 
						
							| 47 | 45 46 | eqeq12d |  |-  ( a = 2o -> ( ( a .o b ) = ( b .o a ) <-> ( 2o .o b ) = ( b .o 2o ) ) ) | 
						
							| 48 | 47 | notbid |  |-  ( a = 2o -> ( -. ( a .o b ) = ( b .o a ) <-> -. ( 2o .o b ) = ( b .o 2o ) ) ) | 
						
							| 49 | 48 | rexbidv |  |-  ( a = 2o -> ( E. b e. On -. ( a .o b ) = ( b .o a ) <-> E. b e. On -. ( 2o .o b ) = ( b .o 2o ) ) ) | 
						
							| 50 | 49 | rspcev |  |-  ( ( 2o e. On /\ E. b e. On -. ( 2o .o b ) = ( b .o 2o ) ) -> E. a e. On E. b e. On -. ( a .o b ) = ( b .o a ) ) | 
						
							| 51 | 38 44 50 | sylancr |  |-  ( -. ( 2o .o _om ) = ( _om .o 2o ) -> E. a e. On E. b e. On -. ( a .o b ) = ( b .o a ) ) | 
						
							| 52 | 37 51 | ax-mp |  |-  E. a e. On E. b e. On -. ( a .o b ) = ( b .o a ) | 
						
							| 53 |  | 1onn |  |-  1o e. _om | 
						
							| 54 | 21 53 | pm3.2i |  |-  ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) /\ 1o e. _om ) | 
						
							| 55 | 4 31 | mp1i |  |-  ( ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) /\ 1o e. _om ) -> ( _om .o 1o ) = _om ) | 
						
							| 56 |  | omordi |  |-  ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) -> ( 1o e. _om -> ( _om .o 1o ) e. ( _om .o _om ) ) ) | 
						
							| 57 | 56 | imp |  |-  ( ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) /\ 1o e. _om ) -> ( _om .o 1o ) e. ( _om .o _om ) ) | 
						
							| 58 | 55 57 | eqeltrrd |  |-  ( ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) /\ 1o e. _om ) -> _om e. ( _om .o _om ) ) | 
						
							| 59 |  | elneq |  |-  ( _om e. ( _om .o _om ) -> _om =/= ( _om .o _om ) ) | 
						
							| 60 | 54 58 59 | mp2b |  |-  _om =/= ( _om .o _om ) | 
						
							| 61 |  | 2onn |  |-  2o e. _om | 
						
							| 62 |  | 1oex |  |-  1o e. _V | 
						
							| 63 | 62 | prid2 |  |-  1o e. { (/) , 1o } | 
						
							| 64 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 65 | 63 64 | eleqtrri |  |-  1o e. 2o | 
						
							| 66 |  | nnoeomeqom |  |-  ( ( 2o e. _om /\ 1o e. 2o ) -> ( 2o ^o _om ) = _om ) | 
						
							| 67 | 61 65 66 | mp2an |  |-  ( 2o ^o _om ) = _om | 
						
							| 68 | 27 | oveq2i |  |-  ( _om ^o 2o ) = ( _om ^o suc 1o ) | 
						
							| 69 |  | oesuc |  |-  ( ( _om e. On /\ 1o e. On ) -> ( _om ^o suc 1o ) = ( ( _om ^o 1o ) .o _om ) ) | 
						
							| 70 | 4 3 69 | mp2an |  |-  ( _om ^o suc 1o ) = ( ( _om ^o 1o ) .o _om ) | 
						
							| 71 |  | oe1 |  |-  ( _om e. On -> ( _om ^o 1o ) = _om ) | 
						
							| 72 | 4 71 | ax-mp |  |-  ( _om ^o 1o ) = _om | 
						
							| 73 | 72 | oveq1i |  |-  ( ( _om ^o 1o ) .o _om ) = ( _om .o _om ) | 
						
							| 74 | 68 70 73 | 3eqtri |  |-  ( _om ^o 2o ) = ( _om .o _om ) | 
						
							| 75 | 67 74 | neeq12i |  |-  ( ( 2o ^o _om ) =/= ( _om ^o 2o ) <-> _om =/= ( _om .o _om ) ) | 
						
							| 76 | 60 75 | mpbir |  |-  ( 2o ^o _om ) =/= ( _om ^o 2o ) | 
						
							| 77 | 76 | neii |  |-  -. ( 2o ^o _om ) = ( _om ^o 2o ) | 
						
							| 78 |  | oveq2 |  |-  ( b = _om -> ( 2o ^o b ) = ( 2o ^o _om ) ) | 
						
							| 79 |  | oveq1 |  |-  ( b = _om -> ( b ^o 2o ) = ( _om ^o 2o ) ) | 
						
							| 80 | 78 79 | eqeq12d |  |-  ( b = _om -> ( ( 2o ^o b ) = ( b ^o 2o ) <-> ( 2o ^o _om ) = ( _om ^o 2o ) ) ) | 
						
							| 81 | 80 | notbid |  |-  ( b = _om -> ( -. ( 2o ^o b ) = ( b ^o 2o ) <-> -. ( 2o ^o _om ) = ( _om ^o 2o ) ) ) | 
						
							| 82 | 81 | rspcev |  |-  ( ( _om e. On /\ -. ( 2o ^o _om ) = ( _om ^o 2o ) ) -> E. b e. On -. ( 2o ^o b ) = ( b ^o 2o ) ) | 
						
							| 83 | 4 82 | mpan |  |-  ( -. ( 2o ^o _om ) = ( _om ^o 2o ) -> E. b e. On -. ( 2o ^o b ) = ( b ^o 2o ) ) | 
						
							| 84 |  | oveq1 |  |-  ( a = 2o -> ( a ^o b ) = ( 2o ^o b ) ) | 
						
							| 85 |  | oveq2 |  |-  ( a = 2o -> ( b ^o a ) = ( b ^o 2o ) ) | 
						
							| 86 | 84 85 | eqeq12d |  |-  ( a = 2o -> ( ( a ^o b ) = ( b ^o a ) <-> ( 2o ^o b ) = ( b ^o 2o ) ) ) | 
						
							| 87 | 86 | notbid |  |-  ( a = 2o -> ( -. ( a ^o b ) = ( b ^o a ) <-> -. ( 2o ^o b ) = ( b ^o 2o ) ) ) | 
						
							| 88 | 87 | rexbidv |  |-  ( a = 2o -> ( E. b e. On -. ( a ^o b ) = ( b ^o a ) <-> E. b e. On -. ( 2o ^o b ) = ( b ^o 2o ) ) ) | 
						
							| 89 | 88 | rspcev |  |-  ( ( 2o e. On /\ E. b e. On -. ( 2o ^o b ) = ( b ^o 2o ) ) -> E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a ) ) | 
						
							| 90 | 38 83 89 | sylancr |  |-  ( -. ( 2o ^o _om ) = ( _om ^o 2o ) -> E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a ) ) | 
						
							| 91 | 77 90 | ax-mp |  |-  E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a ) | 
						
							| 92 | 18 52 91 | 3pm3.2i |  |-  ( E. a e. On E. b e. On -. ( a +o b ) = ( b +o a ) /\ E. a e. On E. b e. On -. ( a .o b ) = ( b .o a ) /\ E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a ) ) |