Metamath Proof Explorer


Theorem oaomoencom

Description: Ordinal addition, multiplication, and exponentiation do not generally commute. Theorem 4.1 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oaomoencom
|- ( E. a e. On E. b e. On -. ( a +o b ) = ( b +o a ) /\ E. a e. On E. b e. On -. ( a .o b ) = ( b .o a ) /\ E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a ) )

Proof

Step Hyp Ref Expression
1 oancom
 |-  ( 1o +o _om ) =/= ( _om +o 1o )
2 1 neii
 |-  -. ( 1o +o _om ) = ( _om +o 1o )
3 1on
 |-  1o e. On
4 omelon
 |-  _om e. On
5 oveq2
 |-  ( b = _om -> ( 1o +o b ) = ( 1o +o _om ) )
6 oveq1
 |-  ( b = _om -> ( b +o 1o ) = ( _om +o 1o ) )
7 5 6 eqeq12d
 |-  ( b = _om -> ( ( 1o +o b ) = ( b +o 1o ) <-> ( 1o +o _om ) = ( _om +o 1o ) ) )
8 7 notbid
 |-  ( b = _om -> ( -. ( 1o +o b ) = ( b +o 1o ) <-> -. ( 1o +o _om ) = ( _om +o 1o ) ) )
9 8 rspcev
 |-  ( ( _om e. On /\ -. ( 1o +o _om ) = ( _om +o 1o ) ) -> E. b e. On -. ( 1o +o b ) = ( b +o 1o ) )
10 4 9 mpan
 |-  ( -. ( 1o +o _om ) = ( _om +o 1o ) -> E. b e. On -. ( 1o +o b ) = ( b +o 1o ) )
11 oveq1
 |-  ( a = 1o -> ( a +o b ) = ( 1o +o b ) )
12 oveq2
 |-  ( a = 1o -> ( b +o a ) = ( b +o 1o ) )
13 11 12 eqeq12d
 |-  ( a = 1o -> ( ( a +o b ) = ( b +o a ) <-> ( 1o +o b ) = ( b +o 1o ) ) )
14 13 notbid
 |-  ( a = 1o -> ( -. ( a +o b ) = ( b +o a ) <-> -. ( 1o +o b ) = ( b +o 1o ) ) )
15 14 rexbidv
 |-  ( a = 1o -> ( E. b e. On -. ( a +o b ) = ( b +o a ) <-> E. b e. On -. ( 1o +o b ) = ( b +o 1o ) ) )
16 15 rspcev
 |-  ( ( 1o e. On /\ E. b e. On -. ( 1o +o b ) = ( b +o 1o ) ) -> E. a e. On E. b e. On -. ( a +o b ) = ( b +o a ) )
17 3 10 16 sylancr
 |-  ( -. ( 1o +o _om ) = ( _om +o 1o ) -> E. a e. On E. b e. On -. ( a +o b ) = ( b +o a ) )
18 2 17 ax-mp
 |-  E. a e. On E. b e. On -. ( a +o b ) = ( b +o a )
19 4 4 pm3.2i
 |-  ( _om e. On /\ _om e. On )
20 peano1
 |-  (/) e. _om
21 19 20 pm3.2i
 |-  ( ( _om e. On /\ _om e. On ) /\ (/) e. _om )
22 oaord1
 |-  ( ( _om e. On /\ _om e. On ) -> ( (/) e. _om <-> _om e. ( _om +o _om ) ) )
23 22 biimpa
 |-  ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) -> _om e. ( _om +o _om ) )
24 elneq
 |-  ( _om e. ( _om +o _om ) -> _om =/= ( _om +o _om ) )
25 21 23 24 mp2b
 |-  _om =/= ( _om +o _om )
26 2omomeqom
 |-  ( 2o .o _om ) = _om
27 df-2o
 |-  2o = suc 1o
28 27 oveq2i
 |-  ( _om .o 2o ) = ( _om .o suc 1o )
29 omsuc
 |-  ( ( _om e. On /\ 1o e. On ) -> ( _om .o suc 1o ) = ( ( _om .o 1o ) +o _om ) )
30 4 3 29 mp2an
 |-  ( _om .o suc 1o ) = ( ( _om .o 1o ) +o _om )
31 om1
 |-  ( _om e. On -> ( _om .o 1o ) = _om )
32 4 31 ax-mp
 |-  ( _om .o 1o ) = _om
33 32 oveq1i
 |-  ( ( _om .o 1o ) +o _om ) = ( _om +o _om )
34 28 30 33 3eqtri
 |-  ( _om .o 2o ) = ( _om +o _om )
35 26 34 neeq12i
 |-  ( ( 2o .o _om ) =/= ( _om .o 2o ) <-> _om =/= ( _om +o _om ) )
36 25 35 mpbir
 |-  ( 2o .o _om ) =/= ( _om .o 2o )
37 36 neii
 |-  -. ( 2o .o _om ) = ( _om .o 2o )
38 2on
 |-  2o e. On
39 oveq2
 |-  ( b = _om -> ( 2o .o b ) = ( 2o .o _om ) )
40 oveq1
 |-  ( b = _om -> ( b .o 2o ) = ( _om .o 2o ) )
41 39 40 eqeq12d
 |-  ( b = _om -> ( ( 2o .o b ) = ( b .o 2o ) <-> ( 2o .o _om ) = ( _om .o 2o ) ) )
42 41 notbid
 |-  ( b = _om -> ( -. ( 2o .o b ) = ( b .o 2o ) <-> -. ( 2o .o _om ) = ( _om .o 2o ) ) )
43 42 rspcev
 |-  ( ( _om e. On /\ -. ( 2o .o _om ) = ( _om .o 2o ) ) -> E. b e. On -. ( 2o .o b ) = ( b .o 2o ) )
44 4 43 mpan
 |-  ( -. ( 2o .o _om ) = ( _om .o 2o ) -> E. b e. On -. ( 2o .o b ) = ( b .o 2o ) )
45 oveq1
 |-  ( a = 2o -> ( a .o b ) = ( 2o .o b ) )
46 oveq2
 |-  ( a = 2o -> ( b .o a ) = ( b .o 2o ) )
47 45 46 eqeq12d
 |-  ( a = 2o -> ( ( a .o b ) = ( b .o a ) <-> ( 2o .o b ) = ( b .o 2o ) ) )
48 47 notbid
 |-  ( a = 2o -> ( -. ( a .o b ) = ( b .o a ) <-> -. ( 2o .o b ) = ( b .o 2o ) ) )
49 48 rexbidv
 |-  ( a = 2o -> ( E. b e. On -. ( a .o b ) = ( b .o a ) <-> E. b e. On -. ( 2o .o b ) = ( b .o 2o ) ) )
50 49 rspcev
 |-  ( ( 2o e. On /\ E. b e. On -. ( 2o .o b ) = ( b .o 2o ) ) -> E. a e. On E. b e. On -. ( a .o b ) = ( b .o a ) )
51 38 44 50 sylancr
 |-  ( -. ( 2o .o _om ) = ( _om .o 2o ) -> E. a e. On E. b e. On -. ( a .o b ) = ( b .o a ) )
52 37 51 ax-mp
 |-  E. a e. On E. b e. On -. ( a .o b ) = ( b .o a )
53 1onn
 |-  1o e. _om
54 21 53 pm3.2i
 |-  ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) /\ 1o e. _om )
55 4 31 mp1i
 |-  ( ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) /\ 1o e. _om ) -> ( _om .o 1o ) = _om )
56 omordi
 |-  ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) -> ( 1o e. _om -> ( _om .o 1o ) e. ( _om .o _om ) ) )
57 56 imp
 |-  ( ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) /\ 1o e. _om ) -> ( _om .o 1o ) e. ( _om .o _om ) )
58 55 57 eqeltrrd
 |-  ( ( ( ( _om e. On /\ _om e. On ) /\ (/) e. _om ) /\ 1o e. _om ) -> _om e. ( _om .o _om ) )
59 elneq
 |-  ( _om e. ( _om .o _om ) -> _om =/= ( _om .o _om ) )
60 54 58 59 mp2b
 |-  _om =/= ( _om .o _om )
61 2onn
 |-  2o e. _om
62 1oex
 |-  1o e. _V
63 62 prid2
 |-  1o e. { (/) , 1o }
64 df2o3
 |-  2o = { (/) , 1o }
65 63 64 eleqtrri
 |-  1o e. 2o
66 nnoeomeqom
 |-  ( ( 2o e. _om /\ 1o e. 2o ) -> ( 2o ^o _om ) = _om )
67 61 65 66 mp2an
 |-  ( 2o ^o _om ) = _om
68 27 oveq2i
 |-  ( _om ^o 2o ) = ( _om ^o suc 1o )
69 oesuc
 |-  ( ( _om e. On /\ 1o e. On ) -> ( _om ^o suc 1o ) = ( ( _om ^o 1o ) .o _om ) )
70 4 3 69 mp2an
 |-  ( _om ^o suc 1o ) = ( ( _om ^o 1o ) .o _om )
71 oe1
 |-  ( _om e. On -> ( _om ^o 1o ) = _om )
72 4 71 ax-mp
 |-  ( _om ^o 1o ) = _om
73 72 oveq1i
 |-  ( ( _om ^o 1o ) .o _om ) = ( _om .o _om )
74 68 70 73 3eqtri
 |-  ( _om ^o 2o ) = ( _om .o _om )
75 67 74 neeq12i
 |-  ( ( 2o ^o _om ) =/= ( _om ^o 2o ) <-> _om =/= ( _om .o _om ) )
76 60 75 mpbir
 |-  ( 2o ^o _om ) =/= ( _om ^o 2o )
77 76 neii
 |-  -. ( 2o ^o _om ) = ( _om ^o 2o )
78 oveq2
 |-  ( b = _om -> ( 2o ^o b ) = ( 2o ^o _om ) )
79 oveq1
 |-  ( b = _om -> ( b ^o 2o ) = ( _om ^o 2o ) )
80 78 79 eqeq12d
 |-  ( b = _om -> ( ( 2o ^o b ) = ( b ^o 2o ) <-> ( 2o ^o _om ) = ( _om ^o 2o ) ) )
81 80 notbid
 |-  ( b = _om -> ( -. ( 2o ^o b ) = ( b ^o 2o ) <-> -. ( 2o ^o _om ) = ( _om ^o 2o ) ) )
82 81 rspcev
 |-  ( ( _om e. On /\ -. ( 2o ^o _om ) = ( _om ^o 2o ) ) -> E. b e. On -. ( 2o ^o b ) = ( b ^o 2o ) )
83 4 82 mpan
 |-  ( -. ( 2o ^o _om ) = ( _om ^o 2o ) -> E. b e. On -. ( 2o ^o b ) = ( b ^o 2o ) )
84 oveq1
 |-  ( a = 2o -> ( a ^o b ) = ( 2o ^o b ) )
85 oveq2
 |-  ( a = 2o -> ( b ^o a ) = ( b ^o 2o ) )
86 84 85 eqeq12d
 |-  ( a = 2o -> ( ( a ^o b ) = ( b ^o a ) <-> ( 2o ^o b ) = ( b ^o 2o ) ) )
87 86 notbid
 |-  ( a = 2o -> ( -. ( a ^o b ) = ( b ^o a ) <-> -. ( 2o ^o b ) = ( b ^o 2o ) ) )
88 87 rexbidv
 |-  ( a = 2o -> ( E. b e. On -. ( a ^o b ) = ( b ^o a ) <-> E. b e. On -. ( 2o ^o b ) = ( b ^o 2o ) ) )
89 88 rspcev
 |-  ( ( 2o e. On /\ E. b e. On -. ( 2o ^o b ) = ( b ^o 2o ) ) -> E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a ) )
90 38 83 89 sylancr
 |-  ( -. ( 2o ^o _om ) = ( _om ^o 2o ) -> E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a ) )
91 77 90 ax-mp
 |-  E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a )
92 18 52 91 3pm3.2i
 |-  ( E. a e. On E. b e. On -. ( a +o b ) = ( b +o a ) /\ E. a e. On E. b e. On -. ( a .o b ) = ( b .o a ) /\ E. a e. On E. b e. On -. ( a ^o b ) = ( b ^o a ) )