Step |
Hyp |
Ref |
Expression |
1 |
|
omex |
|- _om e. _V |
2 |
1
|
sucid |
|- _om e. suc _om |
3 |
|
omelon |
|- _om e. On |
4 |
|
1onn |
|- 1o e. _om |
5 |
|
oaabslem |
|- ( ( _om e. On /\ 1o e. _om ) -> ( 1o +o _om ) = _om ) |
6 |
3 4 5
|
mp2an |
|- ( 1o +o _om ) = _om |
7 |
|
oa1suc |
|- ( _om e. On -> ( _om +o 1o ) = suc _om ) |
8 |
3 7
|
ax-mp |
|- ( _om +o 1o ) = suc _om |
9 |
2 6 8
|
3eltr4i |
|- ( 1o +o _om ) e. ( _om +o 1o ) |
10 |
|
1on |
|- 1o e. On |
11 |
|
oacl |
|- ( ( 1o e. On /\ _om e. On ) -> ( 1o +o _om ) e. On ) |
12 |
10 3 11
|
mp2an |
|- ( 1o +o _om ) e. On |
13 |
|
oacl |
|- ( ( _om e. On /\ 1o e. On ) -> ( _om +o 1o ) e. On ) |
14 |
3 10 13
|
mp2an |
|- ( _om +o 1o ) e. On |
15 |
|
onelpss |
|- ( ( ( 1o +o _om ) e. On /\ ( _om +o 1o ) e. On ) -> ( ( 1o +o _om ) e. ( _om +o 1o ) <-> ( ( 1o +o _om ) C_ ( _om +o 1o ) /\ ( 1o +o _om ) =/= ( _om +o 1o ) ) ) ) |
16 |
12 14 15
|
mp2an |
|- ( ( 1o +o _om ) e. ( _om +o 1o ) <-> ( ( 1o +o _om ) C_ ( _om +o 1o ) /\ ( 1o +o _om ) =/= ( _om +o 1o ) ) ) |
17 |
16
|
simprbi |
|- ( ( 1o +o _om ) e. ( _om +o 1o ) -> ( 1o +o _om ) =/= ( _om +o 1o ) ) |
18 |
9 17
|
ax-mp |
|- ( 1o +o _om ) =/= ( _om +o 1o ) |