Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in TakeutiZaring p. 60. (Contributed by NM, 10-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | oancom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex | |
|
2 | 1 | sucid | |
3 | omelon | |
|
4 | 1onn | |
|
5 | oaabslem | |
|
6 | 3 4 5 | mp2an | |
7 | oa1suc | |
|
8 | 3 7 | ax-mp | |
9 | 2 6 8 | 3eltr4i | |
10 | 1on | |
|
11 | oacl | |
|
12 | 10 3 11 | mp2an | |
13 | oacl | |
|
14 | 3 10 13 | mp2an | |
15 | onelpss | |
|
16 | 12 14 15 | mp2an | |
17 | 16 | simprbi | |
18 | 9 17 | ax-mp | |