Metamath Proof Explorer


Theorem oancom

Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in TakeutiZaring p. 60. (Contributed by NM, 10-Dec-2004)

Ref Expression
Assertion oancom 1𝑜+𝑜ωω+𝑜1𝑜

Proof

Step Hyp Ref Expression
1 omex ωV
2 1 sucid ωsucω
3 omelon ωOn
4 1onn 1𝑜ω
5 oaabslem ωOn1𝑜ω1𝑜+𝑜ω=ω
6 3 4 5 mp2an 1𝑜+𝑜ω=ω
7 oa1suc ωOnω+𝑜1𝑜=sucω
8 3 7 ax-mp ω+𝑜1𝑜=sucω
9 2 6 8 3eltr4i 1𝑜+𝑜ωω+𝑜1𝑜
10 1on 1𝑜On
11 oacl 1𝑜OnωOn1𝑜+𝑜ωOn
12 10 3 11 mp2an 1𝑜+𝑜ωOn
13 oacl ωOn1𝑜Onω+𝑜1𝑜On
14 3 10 13 mp2an ω+𝑜1𝑜On
15 onelpss 1𝑜+𝑜ωOnω+𝑜1𝑜On1𝑜+𝑜ωω+𝑜1𝑜1𝑜+𝑜ωω+𝑜1𝑜1𝑜+𝑜ωω+𝑜1𝑜
16 12 14 15 mp2an 1𝑜+𝑜ωω+𝑜1𝑜1𝑜+𝑜ωω+𝑜1𝑜1𝑜+𝑜ωω+𝑜1𝑜
17 16 simprbi 1𝑜+𝑜ωω+𝑜1𝑜1𝑜+𝑜ωω+𝑜1𝑜
18 9 17 ax-mp 1𝑜+𝑜ωω+𝑜1𝑜