Metamath Proof Explorer


Theorem 2omomeqom

Description: Ordinal two times omega is omega. Lemma 3.17 of Schloeder p. 10. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion 2omomeqom
|- ( 2o .o _om ) = _om

Proof

Step Hyp Ref Expression
1 omelon
 |-  _om e. On
2 2onn
 |-  2o e. _om
3 0ex
 |-  (/) e. _V
4 3 prid1
 |-  (/) e. { (/) , { (/) } }
5 df2o2
 |-  2o = { (/) , { (/) } }
6 4 5 eleqtrri
 |-  (/) e. 2o
7 omabslem
 |-  ( ( _om e. On /\ 2o e. _om /\ (/) e. 2o ) -> ( 2o .o _om ) = _om )
8 1 2 6 7 mp3an
 |-  ( 2o .o _om ) = _om