Description: Ordinal two times omega is omega. Lemma 3.17 of Schloeder p. 10. (Contributed by RP, 30-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | 2omomeqom | |- ( 2o .o _om ) = _om |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon | |- _om e. On |
|
2 | 2onn | |- 2o e. _om |
|
3 | 0ex | |- (/) e. _V |
|
4 | 3 | prid1 | |- (/) e. { (/) , { (/) } } |
5 | df2o2 | |- 2o = { (/) , { (/) } } |
|
6 | 4 5 | eleqtrri | |- (/) e. 2o |
7 | omabslem | |- ( ( _om e. On /\ 2o e. _om /\ (/) e. 2o ) -> ( 2o .o _om ) = _om ) |
|
8 | 1 2 6 7 | mp3an | |- ( 2o .o _om ) = _om |