Description: Ordinal two times omega is omega. Lemma 3.17 of Schloeder p. 10. (Contributed by RP, 30-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2omomeqom | |- ( 2o .o _om ) = _om | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | omelon | |- _om e. On | |
| 2 | 2onn | |- 2o e. _om | |
| 3 | 0ex | |- (/) e. _V | |
| 4 | 3 | prid1 |  |-  (/) e. { (/) , { (/) } } | 
| 5 | df2o2 |  |-  2o = { (/) , { (/) } } | |
| 6 | 4 5 | eleqtrri | |- (/) e. 2o | 
| 7 | omabslem | |- ( ( _om e. On /\ 2o e. _om /\ (/) e. 2o ) -> ( 2o .o _om ) = _om ) | |
| 8 | 1 2 6 7 | mp3an | |- ( 2o .o _om ) = _om |