Metamath Proof Explorer


Theorem omnord1ex

Description: When omega is multiplied on the right to ordinals one and two, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of Schloeder p. 10. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omnord1ex
|- -. ( 1o e. 2o <-> ( 1o .o _om ) e. ( 2o .o _om ) )

Proof

Step Hyp Ref Expression
1 1oex
 |-  1o e. _V
2 1 prid2
 |-  1o e. { (/) , 1o }
3 df2o3
 |-  2o = { (/) , 1o }
4 2 3 eleqtrri
 |-  1o e. 2o
5 ordom
 |-  Ord _om
6 ordirr
 |-  ( Ord _om -> -. _om e. _om )
7 omelon
 |-  _om e. On
8 1onn
 |-  1o e. _om
9 0lt1o
 |-  (/) e. 1o
10 omabslem
 |-  ( ( _om e. On /\ 1o e. _om /\ (/) e. 1o ) -> ( 1o .o _om ) = _om )
11 7 8 9 10 mp3an
 |-  ( 1o .o _om ) = _om
12 2omomeqom
 |-  ( 2o .o _om ) = _om
13 11 12 eleq12i
 |-  ( ( 1o .o _om ) e. ( 2o .o _om ) <-> _om e. _om )
14 6 13 sylnibr
 |-  ( Ord _om -> -. ( 1o .o _om ) e. ( 2o .o _om ) )
15 5 14 ax-mp
 |-  -. ( 1o .o _om ) e. ( 2o .o _om )
16 4 15 2th
 |-  ( 1o e. 2o <-> -. ( 1o .o _om ) e. ( 2o .o _om ) )
17 xor3
 |-  ( -. ( 1o e. 2o <-> ( 1o .o _om ) e. ( 2o .o _om ) ) <-> ( 1o e. 2o <-> -. ( 1o .o _om ) e. ( 2o .o _om ) ) )
18 16 17 mpbir
 |-  -. ( 1o e. 2o <-> ( 1o .o _om ) e. ( 2o .o _om ) )