| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 2 | 1 | prid2 | ⊢ 1o  ∈  { ∅ ,  1o } | 
						
							| 3 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 4 | 2 3 | eleqtrri | ⊢ 1o  ∈  2o | 
						
							| 5 |  | ordom | ⊢ Ord  ω | 
						
							| 6 |  | ordirr | ⊢ ( Ord  ω  →  ¬  ω  ∈  ω ) | 
						
							| 7 |  | omelon | ⊢ ω  ∈  On | 
						
							| 8 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 9 |  | 0lt1o | ⊢ ∅  ∈  1o | 
						
							| 10 |  | omabslem | ⊢ ( ( ω  ∈  On  ∧  1o  ∈  ω  ∧  ∅  ∈  1o )  →  ( 1o  ·o  ω )  =  ω ) | 
						
							| 11 | 7 8 9 10 | mp3an | ⊢ ( 1o  ·o  ω )  =  ω | 
						
							| 12 |  | 2omomeqom | ⊢ ( 2o  ·o  ω )  =  ω | 
						
							| 13 | 11 12 | eleq12i | ⊢ ( ( 1o  ·o  ω )  ∈  ( 2o  ·o  ω )  ↔  ω  ∈  ω ) | 
						
							| 14 | 6 13 | sylnibr | ⊢ ( Ord  ω  →  ¬  ( 1o  ·o  ω )  ∈  ( 2o  ·o  ω ) ) | 
						
							| 15 | 5 14 | ax-mp | ⊢ ¬  ( 1o  ·o  ω )  ∈  ( 2o  ·o  ω ) | 
						
							| 16 | 4 15 | 2th | ⊢ ( 1o  ∈  2o  ↔  ¬  ( 1o  ·o  ω )  ∈  ( 2o  ·o  ω ) ) | 
						
							| 17 |  | xor3 | ⊢ ( ¬  ( 1o  ∈  2o  ↔  ( 1o  ·o  ω )  ∈  ( 2o  ·o  ω ) )  ↔  ( 1o  ∈  2o  ↔  ¬  ( 1o  ·o  ω )  ∈  ( 2o  ·o  ω ) ) ) | 
						
							| 18 | 16 17 | mpbir | ⊢ ¬  ( 1o  ∈  2o  ↔  ( 1o  ·o  ω )  ∈  ( 2o  ·o  ω ) ) |