Step |
Hyp |
Ref |
Expression |
1 |
|
1oex |
⊢ 1o ∈ V |
2 |
1
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
3 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
4 |
2 3
|
eleqtrri |
⊢ 1o ∈ 2o |
5 |
|
ordom |
⊢ Ord ω |
6 |
|
ordirr |
⊢ ( Ord ω → ¬ ω ∈ ω ) |
7 |
|
omelon |
⊢ ω ∈ On |
8 |
|
1onn |
⊢ 1o ∈ ω |
9 |
|
0lt1o |
⊢ ∅ ∈ 1o |
10 |
|
omabslem |
⊢ ( ( ω ∈ On ∧ 1o ∈ ω ∧ ∅ ∈ 1o ) → ( 1o ·o ω ) = ω ) |
11 |
7 8 9 10
|
mp3an |
⊢ ( 1o ·o ω ) = ω |
12 |
|
2omomeqom |
⊢ ( 2o ·o ω ) = ω |
13 |
11 12
|
eleq12i |
⊢ ( ( 1o ·o ω ) ∈ ( 2o ·o ω ) ↔ ω ∈ ω ) |
14 |
6 13
|
sylnibr |
⊢ ( Ord ω → ¬ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) |
15 |
5 14
|
ax-mp |
⊢ ¬ ( 1o ·o ω ) ∈ ( 2o ·o ω ) |
16 |
4 15
|
2th |
⊢ ( 1o ∈ 2o ↔ ¬ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) |
17 |
|
xor3 |
⊢ ( ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) ↔ ( 1o ∈ 2o ↔ ¬ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) ) |
18 |
16 17
|
mpbir |
⊢ ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) |