Metamath Proof Explorer


Theorem omnord1ex

Description: When omega is multiplied on the right to ordinals one and two, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of Schloeder p. 10. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omnord1ex ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) )

Proof

Step Hyp Ref Expression
1 1oex 1o ∈ V
2 1 prid2 1o ∈ { ∅ , 1o }
3 df2o3 2o = { ∅ , 1o }
4 2 3 eleqtrri 1o ∈ 2o
5 ordom Ord ω
6 ordirr ( Ord ω → ¬ ω ∈ ω )
7 omelon ω ∈ On
8 1onn 1o ∈ ω
9 0lt1o ∅ ∈ 1o
10 omabslem ( ( ω ∈ On ∧ 1o ∈ ω ∧ ∅ ∈ 1o ) → ( 1o ·o ω ) = ω )
11 7 8 9 10 mp3an ( 1o ·o ω ) = ω
12 2omomeqom ( 2o ·o ω ) = ω
13 11 12 eleq12i ( ( 1o ·o ω ) ∈ ( 2o ·o ω ) ↔ ω ∈ ω )
14 6 13 sylnibr ( Ord ω → ¬ ( 1o ·o ω ) ∈ ( 2o ·o ω ) )
15 5 14 ax-mp ¬ ( 1o ·o ω ) ∈ ( 2o ·o ω )
16 4 15 2th ( 1o ∈ 2o ↔ ¬ ( 1o ·o ω ) ∈ ( 2o ·o ω ) )
17 xor3 ( ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) ↔ ( 1o ∈ 2o ↔ ¬ ( 1o ·o ω ) ∈ ( 2o ·o ω ) ) )
18 16 17 mpbir ¬ ( 1o ∈ 2o ↔ ( 1o ·o ω ) ∈ ( 2o ·o ω ) )