Metamath Proof Explorer


Theorem omnord1ex

Description: When omega is multiplied on the right to ordinals one and two, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of Schloeder p. 10. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omnord1ex ¬1𝑜2𝑜1𝑜𝑜ω2𝑜𝑜ω

Proof

Step Hyp Ref Expression
1 1oex 1𝑜V
2 1 prid2 1𝑜1𝑜
3 df2o3 2𝑜=1𝑜
4 2 3 eleqtrri 1𝑜2𝑜
5 ordom Ordω
6 ordirr Ordω¬ωω
7 omelon ωOn
8 1onn 1𝑜ω
9 0lt1o 1𝑜
10 omabslem ωOn1𝑜ω1𝑜1𝑜𝑜ω=ω
11 7 8 9 10 mp3an 1𝑜𝑜ω=ω
12 2omomeqom 2𝑜𝑜ω=ω
13 11 12 eleq12i 1𝑜𝑜ω2𝑜𝑜ωωω
14 6 13 sylnibr Ordω¬1𝑜𝑜ω2𝑜𝑜ω
15 5 14 ax-mp ¬1𝑜𝑜ω2𝑜𝑜ω
16 4 15 2th 1𝑜2𝑜¬1𝑜𝑜ω2𝑜𝑜ω
17 xor3 ¬1𝑜2𝑜1𝑜𝑜ω2𝑜𝑜ω1𝑜2𝑜¬1𝑜𝑜ω2𝑜𝑜ω
18 16 17 mpbir ¬1𝑜2𝑜1𝑜𝑜ω2𝑜𝑜ω