Metamath Proof Explorer
		
		
		
		Description:  Ordinal two times omega is omega.  Lemma 3.17 of Schloeder p. 10.
     (Contributed by RP, 30-Jan-2025)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 2omomeqom |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omelon |  | 
						
							| 2 |  | 2onn |  | 
						
							| 3 |  | 0ex |  | 
						
							| 4 | 3 | prid1 |  | 
						
							| 5 |  | df2o2 |  | 
						
							| 6 | 4 5 | eleqtrri |  | 
						
							| 7 |  | omabslem |  | 
						
							| 8 | 1 2 6 7 | mp3an |  |