Metamath Proof Explorer


Theorem 2omomeqom

Description: Ordinal two times omega is omega. Lemma 3.17 of Schloeder p. 10. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion 2omomeqom 2 𝑜 𝑜 ω = ω

Proof

Step Hyp Ref Expression
1 omelon ω On
2 2onn 2 𝑜 ω
3 0ex V
4 3 prid1
5 df2o2 2 𝑜 =
6 4 5 eleqtrri 2 𝑜
7 omabslem ω On 2 𝑜 ω 2 𝑜 2 𝑜 𝑜 ω = ω
8 1 2 6 7 mp3an 2 𝑜 𝑜 ω = ω