Metamath Proof Explorer
Description: Ordinal two times omega is omega. Lemma 3.17 of Schloeder p. 10.
(Contributed by RP, 30-Jan-2025)
|
|
Ref |
Expression |
|
Assertion |
2omomeqom |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omelon |
|
| 2 |
|
2onn |
|
| 3 |
|
0ex |
|
| 4 |
3
|
prid1 |
|
| 5 |
|
df2o2 |
|
| 6 |
4 5
|
eleqtrri |
|
| 7 |
|
omabslem |
|
| 8 |
1 2 6 7
|
mp3an |
|