Metamath Proof Explorer


Theorem 2omomeqom

Description: Ordinal two times omega is omega. Lemma 3.17 of Schloeder p. 10. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion 2omomeqom ( 2o ·o ω ) = ω

Proof

Step Hyp Ref Expression
1 omelon ω ∈ On
2 2onn 2o ∈ ω
3 0ex ∅ ∈ V
4 3 prid1 ∅ ∈ { ∅ , { ∅ } }
5 df2o2 2o = { ∅ , { ∅ } }
6 4 5 eleqtrri ∅ ∈ 2o
7 omabslem ( ( ω ∈ On ∧ 2o ∈ ω ∧ ∅ ∈ 2o ) → ( 2o ·o ω ) = ω )
8 1 2 6 7 mp3an ( 2o ·o ω ) = ω