Description: Ordinal two times omega is omega. Lemma 3.17 of Schloeder p. 10. (Contributed by RP, 30-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | 2omomeqom | ⊢ ( 2o ·o ω ) = ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon | ⊢ ω ∈ On | |
2 | 2onn | ⊢ 2o ∈ ω | |
3 | 0ex | ⊢ ∅ ∈ V | |
4 | 3 | prid1 | ⊢ ∅ ∈ { ∅ , { ∅ } } |
5 | df2o2 | ⊢ 2o = { ∅ , { ∅ } } | |
6 | 4 5 | eleqtrri | ⊢ ∅ ∈ 2o |
7 | omabslem | ⊢ ( ( ω ∈ On ∧ 2o ∈ ω ∧ ∅ ∈ 2o ) → ( 2o ·o ω ) = ω ) | |
8 | 1 2 6 7 | mp3an | ⊢ ( 2o ·o ω ) = ω |